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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-2 GENERAL THEORY OF 

INTEGRATION 
 

Introduction to Block-2 

The Elements of Lebesgue Measure is descended from class notes 

written to acquaint the reader with the theory of Lebesgue measure in the 

space Rp. While it is easy to find good treatments of the case P = 1, the 

case p > 1 is not quite as simple and is much less frequently discussed. 

The main ideas of Lebesgue measure, absolute are presented in detail in 

Units 8,9 although some relatively easy remarks are left to the reader as 

exercises. And these units venture into the topic of non measurable sets 

and round out the subject. 

There are many expositions of the Lebesgue integral from various points 

of view, but I believe that the abstract measure space approach used here 

strikes directly towards the most important results: the convergence 

theorems. Further, this approach is particularly well suited for students of 

probability and statistics, as well as students of analysis. Since the book 

is intended as an introduction, I do not follow all of the avenues that are 

encountered.  Even in calculus courses, one needs to extend the integral 

by defining ―improper integrals‖, either because the integrand has a 

singularity, or because the interval of integration is infinite. In addition, 

by taking pointwise limits of Riemann integrable functions, one quickly 

encounters functions that are no longer Riemann integrable. Even when 

one requires uniform convergence, there are problems on infinite 

intervals. In block-2 we will learn and understand about Measures, 

Modes of converges, Application to calculus, Improper Integrals, 

Substitution theorems, Absolute Continuity, Mapping properties of AC 

functions. 
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UNIT-8 MEASURES 

 

STRUCTURE 

8.0 Objective 

8.1 Introduction 

8.2 Lebesgue Integration 

8.3 The Riemann–Darboux approach 

8.4 Definitions and Properties of Measures 

8.5 Let us sum up 

8.6 Key words 

8.7 Questions for review 

8.8 Suggestive readings and references 

8.9 Answers to check your Progress 

8.0 OBJECTIVE 

 

In this unit we will learn and understand about Lebesgue integration, 

Definitions related to measures, Theorems, Examples and  The Riemann 

Darboux approach. 

8.1 INTRODUCTION 

 

In mathematics, the integral of a non-negative function of a single 

variable can be regarded, in the simplest case, as the area between 

the graph of that function and the x-axis. The Lebesgue integral extends 

the integral to a larger class of functions. It also extends the domains on 

which these functions can be defined. 

Long before the 20th century, mathematicians already understood that 

for non-negative functions with a smooth enough graph—such 

as continuous functions on closed bounded intervals—the area under the 

curve could be defined as the integral, and computed using 

approximation techniques on the region by polygons. However, as the 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Area
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Domain_(mathematics)
https://en.wikipedia.org/wiki/Smooth_function
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Closed_set
https://en.wikipedia.org/wiki/Bounded_set
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Polygon
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need to consider more irregular functions arose—e.g., as a result of 

the limiting processes of mathematical analysis and the 

mathematical theory of probability—it became clear that more careful 

approximation techniques were needed to define a suitable integral. Also, 

one might wish to integrate on spaces more general than the real line. 

The Lebesgue integral provides abstractions needed to do this important 

job. 

The Lebesgue integral plays an important role in probability theory, real 

analysis, and many other fields in the mathematical sciences. It is named 

after Henri Lebesgue (1875–1941), who introduced the integral 

(Lebesgue 1904). It is also a pivotal part of the axiomatic theory of 

probability. 

The term Lebesgue integration can mean either the general theory of 

integration of a function with respect to a general measure, as introduced 

by Lebesgue, or the specific case of integration of a function defined on a 

sub-domain of the real line with respect to the Lebesgue measure. 

8.2 LEBESGUE INTEGRATION 

 

The integral of a positive function f between limits a and b can be 

interpreted as the area under the graph of f. This is easy to understand for 

familiar functions such as polynomials, but what does it mean for more 

exotic functions? In general, for which class of functions does "area 

under the curve" make sense? The answer to this question has great 

theoretical and practical importance. 

As part of a general movement toward rigor in mathematics in the 

nineteenth century, mathematicians attempted to put integral calculus on 

a firm foundation. The Riemann integral—proposed by Bernhard 

Riemann (1826–1866)—is a broadly successful attempt to provide such a 

foundation. Riemann's definition starts with the construction of a 

sequence of easily calculated areas that converge to the integral of a 

given function. This definition is successful in the sense that it gives the 

expected answer for many already-solved problems, and gives useful 

results for many other problems. 

https://en.wikipedia.org/wiki/Limit_of_a_function
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Theory_of_probability
https://en.wikipedia.org/wiki/Real_analysis
https://en.wikipedia.org/wiki/Real_analysis
https://en.wikipedia.org/wiki/Henri_Lebesgue
https://en.wikipedia.org/wiki/Lebesgue_integration#CITEREFLebesgue1904
https://en.wikipedia.org/wiki/Axiomatic_theory_of_probability
https://en.wikipedia.org/wiki/Axiomatic_theory_of_probability
https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Real_line
https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Polynomials
https://en.wikipedia.org/wiki/Mathematical_rigor
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Bernhard_Riemann
https://en.wikipedia.org/wiki/Bernhard_Riemann


Notes 

8 

However, Riemann integration does not interact well with taking limits 

of sequences of functions, making such limiting processes difficult to 

analyze. This is important, for instance, in the study of Fourier 

series, Fourier transforms, and other topics. The Lebesgue integral is 

better able to describe how and when it is possible to take limits under 

the integral sign (via the powerful monotone convergence 

theorem and dominated convergence theorem). 

While the Riemann integral considers the area under a curve as made out 

of vertical rectangles, the Lebesgue definition considers horizontal slabs 

that are not necessarily just rectangles, and so it is more flexible. For this 

reason, the Lebesgue definition makes it possible to calculate integrals 

for a broader class of functions. For example, the Dirichlet function, 

which is 0 where its argument is irrational and 1 otherwise, has a 

Lebesgue integral, but does not have a Riemann integral. Furthermore, 

the Lebesgue integral of this function is zero, which agrees with the 

intuition that when picking a real number uniformly at random from the 

unit interval, the probability of picking a rational number should be zero. 

Lebesgue summarized his approach to integration in a letter to Paul 

Montel: 

I have to pay a certain sum, which I have collected in my pocket. I take 

the bills and coins out of my pocket and give them to the creditor in the 

order I find them until I have reached the total sum. This is the Riemann 

integral. But I can proceed differently. After I have taken all the money 

out of my pocket I order the bills and coins according to identical values 

and then I pay the several heaps one after the other to the creditor. This is 

my integral. 

The insight is that one should be able to rearrange the values of a 

function freely, while preserving the value of the integral. This process of 

rearrangement can convert a very pathological function into one that is 

"nice" from the point of view of integration, and thus let such 

pathological functions be integrated. 

Intuitive interpretation. 

To get some intuition about the different approaches to integration, let us 

imagine that we want to find a mountain's volume (above sea level). 

https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Monotone_convergence_theorem
https://en.wikipedia.org/wiki/Monotone_convergence_theorem
https://en.wikipedia.org/wiki/Dominated_convergence_theorem
https://en.wikipedia.org/wiki/Dirichlet_function
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Paul_Montel
https://en.wikipedia.org/wiki/Paul_Montel
https://en.wikipedia.org/wiki/Pathological_(mathematics)
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8.3 THE RIEMANN–DARBOUX 

APPROACH 
 

Divide the base of the mountain into a grid of 1 meter squares. Measure 

the altitude of the mountain at the center of each square. The volume on a 

single grid square is approximately 1 m
2
 × (that square's altitude), so the 

total volume is 1 m
2
 times the sum of the altitudes. 

The Lebesgue approach 

Draw a contour map of the mountain, where adjacent contours are 

1 meter of altitude apart. The volume of earth a single contour contains is 

approximately 1 m × (that contour's area), so the total volume is the sum 

of these areas times 1 m. 

Folland summarizes the difference between the Riemann and Lebesgue 

approaches thus: "to compute the Riemann integral of f, one partitions 

the domain [a, b] into subintervals", while in the Lebesgue integral, "one 

is in effect partitioning the range of f ." 

We have introduced the notion of a measurable space  X,X  consisting 

of a set X and a   algebra X of subsets of X. We now consider certain 

functions which are defined on X and have real, or extended real values. 

These functions, which will be called ―measures,‖ are suggested by our 

idea of length, area, mass, and so forth. Thus it is natural that they should 

attach the value 0 to the empty set   and that they should be additive 

over disjoint sets in X. (Actually we shall require that they be countably 

additive in the sense to be described below.) It is also desirable to permit 

the measures to take on the extended real number .  

8.4 DEFINITIONS AND PROPERTIES OF 

MEASURES  
 

8.1 DEFINITION. A measure is an extended real-valued function 

defined on a   algebra X of subsets of X such that 

       i 0, ii E 0     for all E X,  and  iii  is countably 

https://en.wikipedia.org/wiki/Contour_map
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additive in the sense that if  nE  is any disjoint sequence of sets in X, 

then 

(8.1)  n n

n 1n 1

E E .
 



 
   
 

  

Since we permit   to take on , we remark that the appearance of 

value  on the right side of the equation (8.1) means either that 

 nE    for some n or that the series of nonnegative terms on the 

right side of (8.1) is divergent. If a measure foes not take on ,   

 *This means that n mE E if n m.   
 

We say that it is finite. More generally, if there exists a sequence  nE of 

sets in X with nX E  and such that  nE    for all n, then we say 

that  is   finite. 

8.2 EXAMPLES. (a) Let X be any nonempty set and let X be the  

algebra of all subsets of X. Let 1 be defined on X by 

 1 E 0, forallE X;    

And let 2 be defined by 

   2 20, E if E .         

Both 1  and 2  are measures, although neither one is very interesting. 

Note that 2  is neither finite nor   finite. 

(b) Let  X,X be as in (a) and let p be a fixed element of X. Let   be 

defined for E X by 

 E 0, if p E,

1, if P E.

  

 
 

It is readily seen that   is a finite measure; it is called the unit measure 

concentrated at p. 
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(c) Let  X N 1,2,3,...  and let X be the   algebra of all subsets of 

N. If E X, define  E  to be equal to the number of elements in E if E 

is a finite set and equal to  if E  is an infinite set. Then  is a measure 

and is called the counting measure on N. Note that   is not finite, but it 

is   finite. 

(d) If X R and X B, the Borel algebra, then it will be shown in 

Chapter 9 that there exists a unique measure   defined on B which 

coincides with length on open intervals. [By this we mean that if E is the 

nonempty interval (a,b), then  E b a.   ] This unique measure is 

usually called Lebesgue (or Borel) measure. It is not a finite measure, but 

it is   finite. 

(e) If X R, X B,  and f is a continuous monotone increasing 

function, then it will be shown in Chapter 9 that there exists a unique 

measure f defined on B such that if  E a,b ,  then 

     f E f b f a .    This measure f is called the Borel-Stieltjes 

measure generated by f. 

We shall now derive a few simple results that will be needed later. 

8.3 LEMMA. Let  be a measurable defined on a   algebra X. If E and 

F belong to X and E F, then    E F .    If  E ,    then 

     F/E F E .      

PROOF. Since    F E F/E andE F/E ,     it follows that 

     F E F/E .      

Since  F/E 0,  it follows that    F E .    If  E ,    then 

we can subtract it from both sides of this equation. 

8.4 LEMMA. Let   be a measurable defined on a   algebra X. 

(a) If  nE  is an increasing sequence in X, then 
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(8.2)  n n

n 1

E lim E .




 
   
 

 

(b) If  nF  is a decreasing sequence in X and if  1F ,    then 

(8.3)  n n

n 1

F lim F .




 
   
 

 

PROOF. (a)  If   nE   for some n, then both sides of equation 

(8.2) are .  Hence we can suppose that  nE   for all n. 

Let 1 1 n n n 1A E andA E /E   for n > 1. Then  nA  is a disjoint 

sequence of sets in X such that 

n

n j n n

j 1 n 1 n 1

E A , E A .
 

  

   

Since   is countably additive, 

   
m

n n n

n 1 n 1n 1

E A lim A .
 

 

 
     
 

   

By Lemma 8.3      n n n 1A E E      for n > 1, so the finite series 

on the right side telescopes and 

   
m

n m

n 1

A E .


    

Hence equation (8.2) is proved. 

(b) Let n 1 nE F /F ,  so that  nE  is an increasing sequence of sets in 

X. If we apply part (a) and Lemma 8.3, we infer that 

     

   

n n 1 n

n 1

1 n

E lim E lim F F

F lim F .





 
          
 

   

 

Since n 1 nn 1 n 1
E F / F ,

 

 
  it follows that 



Notes 

13 

 n 1 n

n 1 n 1

E F F .
 

 

   
       
   

 

Combining these two equations, we obtain (8.3) 

8.5 DEFINITION. A measure space is a triple  X,X, consisting of a 

set X, a   algebra X of subsets of X, and a measure   defined on X. 

There is a terminological matter that needs to be mentioned and which 

shall be employed in the following. We shall say that a certain 

proposition holds   almost everywhere if there exists a subset N X  

with  N 0  such that the proposition holds on the complement of N. 

Thus we say that two functions f, g are equal   almost everywhere or 

that they are equal for   almost all x in case    f x g x  when 

x N,  for some N x  with  N 0.   In this case we will often write  

f g, a.e.    

In like manner, we say that a sequence  nf  of function on X converges 

  almost everywhere (or converges for   almost all x) if there exists 

a set N X  with  N 0   such that    nf x limf x for x N.  In 

this case we often write 

nf limf , a .e.    

Of course, if the measure  is understood, we shall say ―almost 

everywhere‖ instead of ― -almost everywhere.‖ 

There are some instances (suggested by the notion of electrical charge, 

for example) in which it is desirable to discuss functions which behave 

like measures except that they take both positive and negative values. In 

this case, it is not so convenient to permit the extended real numbers 

,   to be values since we wish to  avoid expressions of the form 

   .    Although it is possible to handle ―singed measures‖ which 

take on only one of the values , ,  we shall restrict our attention to 
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the case where neither of these symbols is permitted. To indicate this 

restriction, we shall introduce the term ―charge,‖ which is not entirely 

standard. 

8.6 DEFINITION. If X is a    algebra of subsets of a set X, then a real-

valued function   defined on X is said to be a charge in case   0    

and   is countably additive in the sense that if  nE  is a disjoint 

sequence of sets in X, then 

 n n

n 1n 1

E E .
 



 
   
 

  

[Since the left-hand side is independent of the order and this equality is 

required for all such sequences, the series on the right-hand side must be 

unconditionally convergent for all disjoint sequences of measurable sets.] 

It is clear that the sum and different of two charges in a charge. More 

generally, any finite linear combination of charges is a charge. It will be 

seen in Chapter 5 that functions which are integrable over a measure 

space  X,X,  give rise to charges. Later, in Chapter 8, we will 

characterize those charges which are generated by integrable functions. 

EXERCISES 

8.A. If   is a measure on X and A is a fixed set in X, then the function 

,  defined for E X  by    E A E ,    is a measure X.  

8.B. If 1 n,...,   are measure on X and 1 na ,...a are nonnegative real 

numbers, then the function ,  defined for E X  by 

   
n

j j

j 1

E a E ,


    

Is a measure on X. 

8.C. If  n  is a sequence of measures on X with  n X 1   and if   is 

defined by 



Notes 

15 

   n

n

n 1

E 2 E , E X,






     

Then   is a measure of X and  X 1.   

8.D. Let X N  and let X be the   algebra of all subsets of N. If  na  

is a sequence of nonnegative real numbers and if we define   by 

    n

n E

0; E a , E ;


        

Then   is a measure on X. Conversely, every measure on X is obtained 

in this way for some sequence  na in R .  

8.E. Let X be an uncountable set and let X be the family of all subsets of 

X. Define   on E in X by requiring that  E 0,   if E is countable, and 

 E ,    if E is uncountable. Show that   is a measure on X. 

8.F. Let  X N  and let X be the family of all subsets of N. If E is finite, 

let  E 0;   if E is infinite, let  E .    Is    measure on X? 

8.G. If X and X are as in Exercise 8.F, let  E    for all E X. Is 

  is a measure? 

8.H. Show that Lemma 8.4(b) may fail if the finiteness condition 

 1F    is dropped. 

8.1. Let  X,X,  be a measure space and let  nE  be a sequence in X. 

Show that 

   n nliminf E liminf E .    

[See Exercise 2.E] 

8.1. Using the notation of Exercise 2.D, show that  

   n nlimsup E limsupE   
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Where  nE .     Show that this inequality may fail if 

 nE .     

8.K. Let  X,X,  be a measure space and let   Z E X : E 0 .     

Is Z a   algebra? Show that if E Z and F X,  then E F Z.   

Also, if nE  belongs to Z for n N,  then nE Z.   

8.L. Let X,X, ,Z  be as in Exercise 8.K and let 'X be the family of all 

subsets of X of the form  

 1 2E Z /Z , E X,   

Where 1Z and 2Z are arbitrary subsets belonging to Z. Show that asset 

is in 'X  if and only if it has the form E Z  where E X  and Z is a 

subset of a set in Z. Show that the collection 'X  forms a   algebra of 

sets in X. The   algebra 'X is called the completion of X (with respect 

to  ). 

8.M. With the notation of Exercise 8.L, let '  be defined on  'X by 

   ' E Z E ,     

When E X  and Z is a subset of a set in Z. Show that '  is well-defined 

and is a measure 'X  which agrees with   on X. The measure '  is called 

the completion of  . 

8.N. Let  X,X,  be a measure space and let  ' 'X,X ,  be its 

completion in the sense of Exercise 8.M. Suppose that f is an 'X 

measurable function on X to R.  Show that there exists an X-measurable 

function g on X to R.which is   almost everywhere equal of f. (Hint: 

For each rational number r, let   rA x : f x r   and write 

r r rA E Z ,   where rE X  and rZ  is a subset of a set in Z. Let Z be 

a set in Z contanining rZ and define    g x f x  for x Z,  and 
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 g x 0  for x Z.  To show that g is X-measurable, use Exercise 2. 

. ) 

8.O. Show that Lemma 8.4 holds if   is a charge on X. 

8.P. If   is a charge on X, let  be defined for E X  by 

    E sup A : A E,A X .      

Show that   is a measure on X. (Hint: If  E    and 0,  let 

nF X  be such that nF E  and   n

n(E ) F 2 .

     ) 

8.Q. If   is a charge on X, let   be defined for E X  by 

   
n

j

j 1

E sup A ,


    

Where the supremum is taken over all the finite disjoint collections  jA  

in X with 
n

jj 1
E A .


  Show that   is a measure on X. (It is called the 

variation of . ) 

8.R. Let  denote Lebesgue measure defined on the Borel algebra B of R 

[See Example 8.2(d)]. (a) If E consists of a single point, then E B  and 

 E 0.  (b) If E is countable, then E B and  E 0.   

(c) The open interval (a, b), the half-open intervals (a, b], [a, b), and the 

closed interval [a, b] all have Lebesgue measure b –a. 

8.S. If   denotes Lebesgue measure E is an open subset of R, then 

 E 0   if and only if E is nonvoid. Show that if K is a compact subset 

of R, then  K .    

8.T. Show that the Lebesgue measure of the Cantor set is zero. 

8.U. By varying the construction of the Cantor set, obtain a set of 

positive Lebesgue measure which contains no nonvoid open interval. 
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8.V. Suppose that E is a subset of a set N X  with  N 0   but that 

E X.  The sequence  n nf ,f 0,  converges   almost everywhere to 

EX .  Hence the almost everywhere limit of a sequence of measurable 

functions may not be measurable.  

Check your progress 

1. Prove: Let  be a measurable defined on a   algebra X. If E and F 

belong to X and E F, then    E F .    If  E ,    then 

     F/E F E .      

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let   be a measurable defined on a   algebra X. 

(a) If  nE  is an increasing sequence in X, then 

(8.2)  n n

n 1

E lim E .




 
   
 

 

(b) If  nF  is a decreasing sequence in X and if  1F ,    then 

                            n n

n 1

F lim F .




 
   
 

 

__________________________________________________________

__________________________________________________________

________________________________________________________ 

8.5 LET US SUM UP 
 

1. A measure is an extended real-valued function  defined on a  

algebra X of subsets of X such that        i 0, ii E 0     for all 
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E X,  and  iii  is countably additive in the sense that if  nE  is any 

disjoint sequence of sets in X, then 

(8.1)  n n

n 1n 1

E E .
 



 
   
 

  

2. Let  be a measurable defined on a   algebra X. If E and F belong to 

X and E F, then    E F .    If  E ,    then 

     F/E F E .      

3. Let   be a measurable defined on a   algebra X. 

(a) If  nE  is an increasing sequence in X, then 

(8.2)  n n

n 1

E lim E .




 
   
 

 

(b) If  nF  is a decreasing sequence in X and if  1F ,    then 

(8.3)  n n

n 1

F lim F .




 
   
 

 

4.  If X is a    algebra of subsets of a set X, then a real-valued function 

  defined on X is said to be a charge in case   0    and   is 

countably additive in the sense that if  nE  is a disjoint sequence of sets 

in X, then 

 n n

n 1n 1

E E .
 



 
   
 

  

8.6 KEY WORDS 

Lebesgue Integration 

Measures 

Riemann- Darboux approach 

Real valued function 
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8.7 QUESTIONS FOR REVIEW 

1. Explain about Lebesgue integration 

2. Prove: Let   be a measurable defined on a   algebra X. 

(a) If  nE  is an increasing sequence in X, then 

  n n

n 1

E lim E .




 
   
 

 

(b) If  nF  is a decreasing sequence in X and if  1F ,    then 

 n n

n 1

F lim F .




 
   
 

 

8.8 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

8.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 8.4 

2. See section 8.4 

3. See section 8.4 
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UNIT-9 MODES OF CONVERGENCE 

 

STRUCTURE 

9.0 Objective 

9.1 Introduction 

9.2 Egorow‘s theorem 

9.3 Luzin‘s theorem 

9.4 Riesz sub sequence theorem 

9.5 Let us sum up 

9.6 Key words 

9.7 Questions for review 

9.8 Suggestive readings and references 

9.9 Answers to check your progress 

9.0 OBJECTIVE 
 

In this unit we will learn and understa22nd about Definitions, Egorow‘s 

theorem, Luzin‘s theorem, Riesz sub sequence theorems and their proofs. 

9.1 INTRODUCTION 
 

In this section we will study a number of modes of convergence that are 

of importance in analysis and in the theory of probability. We will 

examine to some detail the relations between these types of convergence. 

We finish with a pair of necessary and sufficient conditions for a 

sequence of functions in C(I) to be convergent in mean. Throughout this 

section we will suppose that I is a compact interval in R. While most of 

the results presented here have extensions to unbounded intervals (see 

Section 20), some additional hypotheses may be needed in that case. 
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Almost Uniform Convergence 

We have already discussed uniform convergence, point wise 

convergence and a.e. convergence. We now introduce another mode of 

convergence of functions in M(I) that is often useful. Intuitively, almost 

uniform convergence of a suqence in M(I) means that, outside of certain 

subsets of I having arbitrarily small measure, one has uniform 

convergence. 

WARNINGS. (a) This is not the same thing as saying that one has 

uniform convergence outside of a null set. See Exercises 9.C and 9.D. 

(b) This use  of the word ―almost‖ is in slight conflict with the ‗almost 

everywhere‖ terminology. However, we will use it because it is quite 

standard. 

 9.1 Definition. (a) A section ( ) ( )nf in M I  is said to be almost 

uniformly convergent to a function  ; [ , ] 0f on I a b if for every   

there exists a measurable set  ( )nE I with E suchthat f    converges 

to  I uniformly on the set  I E  in this case we sometimes write 

 [ , ] .nf f a u on I  

(b) We say that  a sequence  ( ) ( )nf in M I  is almost uniformly Cauchy on  

I if for every  0   there exists a measurable set  E I with E     

such that   ( )nf  is a uniform Cauchy sequence on  .I E [this means 

that for every  0 there exists  ( ) ( )N N suchthat if m n N e     and  

, | ( ) ( ) | .]m nx I E then f x f x     

It is an easy exercise to show that if a sequence ( ) ( )nf in M I  is almost 

uniformly convergent to  ,f on I  then it is almost uniformly Cauchy on 

I. Morever, this sequence converges a.e. to f on I so that  ( ).f M I We 

now establish a result in the converse direction.  

 9.2 Lemma. If a sequence  ( ) ( )nf inM I  is almost uniformly Cauchy 

on I, then there exists a functions ( )f M I such that ( )nf  converges 

almost uniformly and almost everywhere to f. 
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Proof. If , ( )kk N let E M I  be such that  1/ 2 ( )k

k nE and f  is 

uniformly Cauchy and therefore uniformly convergent on  .kI E Let  

: limsup ,k kF E  we have  0F  . If follows from the definition of F 

that if  ,x I F  then there exists  xk  such that  .k xx I E for all k k    

Therefore,  

lim ( ) ( ) : lim ( ) ( ); 0n n n nf x exists for all x I F and wedefine f on I by f x f x for x I Fand f x     

 for  .x F  Therefore . . ( ).nF fa e and f M I   

To see that the convergence is almost uniform, let 0  be given and let 

K be such that  
11/ 2 . : ,K

K j K jIf F E 

  then it follows from  

(10 ) that   11/ 2 .K

K j

j K

F E 






    

Since  ,K KI F I E   the sequence ( )nf is a uniform Cauchy sequence 

on  ,KI F whence it follows that  ( )nf converges to f uniformly on  

KI F  Q.E.D. 

We now establish and important theorem, proved in 1911 by the Russian 

mathematician    Dmitrii Fedorovich Egorow (=D.Th.Egorof). As this 

result is stated here, it is valid only for compact intervals. In Section 20 

we will give a formulation of this result for unbounded intervals. 

9.2 EGOROW’S THEOREM.  
 

Let I be a compact interval and let ( )nf  be a sequence in M(I) that 

converges almost everywhere to  ( ) .f M I on I Then the sequence ( )nf  

converges almost uniformly to  .f on I  

Proof. We suppose without loss of generality that ( )nf converges to  f  

at every point of I. If , ,m n N  we let 

  ( ) : 1/ ,n k
k n

E m f f m




    

So that  1( ) ( ) ( ) ( ). ,n n n nE m M I and E m E m Since f f on I then    

 
1

( ) .n
n

E m 




  

Therefore  (10, ) implites that  

( ) 0 , . 0nE m as n for eachm N If      is given, for each  
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, mm N welet k N  be such that  ( ) / 2
m

m

kE m  and set 

1: ( ).
mm kE E m



 Therefore  ( ) (10. ).E M I and E by      We note 

that if  , ( )
mkx E then x E m  for every  ,m N  so that 

( ) ( ) 1/kf x f x m   

For all  .mk k Therefore - ( )nf is uniformly convergent to  

. . . .f on I E Q E D  

As an application of Egorov‘s theorem, we will establish one form of a 

remarkable therorem, proved in 1912 by Nikolal Nikolaevich Luzin 

(=Lusin) (1883-1950). 

9.3 LUZIN’S THEOREM 
 

 If f belongs to  ( )M I . Then given  0   there exists a measurable set  

E I with E     such that the restriction of  :f to F I E    is 

continuous on  F .  

 Proof. Since  ( ),f M I it follows from Theorem 6.7 that thee exists a 

sequence  ( )kh  of continuous functions that converges to  . . .f a e on I In 

view of Egorov‘s Theorem, for each  0  there exists a set  

( )E M I with E    such that  ( )nh converges to  f  uniformly on  

: .F I E   Of course, the restriction  |nh f F  is continuous on  F and 

since this sequence converges to  |f F uniformly on  F  we conclude 

that the restriction |f F  is continuous. Q.E.D. 

 Remarks (a) One should not misunderstand the assertion in Luzin‘s 

Thereorem. It is not begin claimed that  f  is continuous at any point of 

Z . Note that if f is Dirichlet‘s function from Example 2.3(a), then there 

is a null set Z  such that the restriction of to  0,1 Z is continuous; 

however, f  is not continuous at any point of  0,1 . 

        (b)  Another form of Luzin‘s Theorem is that if ( )f M I , then for 

every 0,   there exists a continuous function g on I such that 

 | |f g  .  (See Theorem 20.18.)  
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Convergence in Measure 

There is another mode of convergence for measurable functions that is 

particularly important in probability theory. First we note that if  

, ( ).nf f M I then (by Theorem 6.1)  the function   nf f  is also 

measurable and therefore (by Theorem 10.5) the set   nf f    is a 

measurable set in I. 

Definition. (a) A sequence  ( ) ( )nf M I  converges in measure (or 

converges in probability) to  ( )f M I  if for every  0,   we have 

 (11. )     lim 0.n
n

f f 


    

In this case we sometimes write 

 [ ] .nf f meas on I  

(b) A sequence  ( ) ( )nf M I  is Cauchy in measure if for every  0.   

we have 

 (11, )    
,
lim 0.m n

m n
f f 


    

It seems reasonable, but is not obvious, that a sequence that converges in 

measure is also Cauchy in measure, and that the limit of a sequence that 

converges in measure is unique a.e. We now state these results formally. 

 9.6 Lemma. (a) If  ( )nf  converges in measure to   , nf then f  is Cauchy 

in measure. 

(b)If   nf  converges in measure to  f and also to  g  then  . .f a e  

Proof. (a) It follows from the Triangle Inequality that 

 ( ) ( ) ( ) ( ) ( ) ( ) ,m n m nf x f x f x f x f x f x      

Whence we infer that 

  
1 1

.
2 2

m n m nf f f f f f  
   

         
   

 

Since the measures of the sets on the right side approach 0 as  , ,m n  

the statement follows from  (11, )  and the fact that  .A B A B  

The proof of (b) is similar and is an exercise.  
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We need to relate the notions of convergence in measure   meas  with 

those of almost uniform   , .a u  convergence and convergence in mean 

 meas . 

 9.7 Lemma. (a) If  a sequence  ( ) ( )nf M I  converges almost uniformly 

to  ( ) ,f M I on I then it converges in measure to  .f on I  

(b) If a sequence  ( ) ( )nf R I  then it converges in measure to  .f on I  

Proof. (a) Let  0  be given By hypothesis, for every  m N there 

exists  ( )mE M I  with  1/mE m such that  ( )nf converges uniformly 

to  f  on mI E . Consequently, there exists  ( , )N m N  such that if  

( , )n N m then the set nf f      so that 

    | | | | | | 1/ .n mf f a E m     

Since m is arbitrary, we conclude that nf f [meas] on I . 

     (b) Let 0a  be given and let 
   ( ).n nF f f M I     Since we 

have  .1 ,
nF nf f   it follows from Corollary 3.3 or from Chebysber‘s 

Inequality  that 

 .n n n

I

F f f f f      

But since  0,nf f  we conclude that  0nF as n  for each 

fixed  0. nThus f f   [mean] on  .I  Q.E.D. 

The next examples show that there are some drastic difference between 

convergence in measure and the other modern of convergence. 

9.8 Examples. (a) let  (0.1/ ): .1n nh n  on the internal  : [0.1] .I for n N   It 

is an exercise to show that the sequence  [ ]nh converges everywhere (and 

hence almost everywhere),almost uniformly, and in measure to the zero 

function on  .I However, this sequence does not converge in mean. 

(b) Let  ( )Kf be the sequence of functions defined in Exercise 8.F. It was 

shown that this sequence converges in mean to the zero function. 

Therefore,  it follows from Theorem 9.7(b) that it converges in measure. 

However, it was also seen in that exercise that this sequence does not 

converge at any point of I, so it does ot converge a.e. or a.u on  .I  
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It was seen in the proof of the Completenses Theorem 9.12 that a 

sequence that a sequence that in Cauchy in mean but a subsequence that 

is e.e. convergent. We will now show that a sequence that a Cauchy is 

measure has a subseqeucne that is a.e. convergent. (This result is due to 

F. Riest.) 

9.4 RIESZ SUBSEQUENCE THEOREM.  
 

If  ( ) ( )nf M I  is Cauchy in measure, then there exist a subsequence  

( ) ( )
nn

n nf f M I suchthat f f   almost everywhere, almost uniformly 

and in measure on  ( , )I a b  

In face the entire sequence  ( )nf converges in measure to  f . 

Proof. If ( )nf  is Cauchy in measure, it is an exercise to show that for 

every  0  there exists  ( )N N   such that if  ( ),m n N   then. 

  .m nf f      

We let  1 : (1/ 2)n N and inductively define   1 max 1, (1/ 2 ) .k

k kn n N  

Now set  :
kk ng f  to obtain a subsequence of  ( )nf  with the property 

that if   1: 1/ 2 , 1/ 2 .k k

k k k KE g g then E     

 (11. )    11/ 2 ... 1/ 2k i    

11/ 2 .i  

Therefore it follows that  ( ( ))kg x  converges for each  .x I F  WE 

define  ( ) : lim ( ) ( ) : 0 .k kf x g x for x I Fand f x for x F    

Consequently  [ , ] ( ).kg f a e on I and f M I   

It remains to show that the original sequence  ( )nf  converges in measure 

to  .f on I Indeed, an argument similar to that in Lemma 9.6 shows that  

  
1 1

.
2 2k kn n n nf f f f f f  

   
          

   
 

Now the first term on the right approaches 0 since the subsequence  ( )
knf  

converges in measure to  ,f  and the second term approaches 0 since the 

sequence  ( )nf  is Cauchy in measure. Q.E.D. 
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It is useful to summarize the implications that have been established 

concerning the various modes of convergence. Following M.E. Munroe, 

we do so in the following diagram. Here a solid arrow signifies 

implication, a dashed arrow signifies that a subsequence converges in the 

indicated mode, and the absence of an arrow indicates that a 

counterexample can be established. (Thus Egorov‘s Theorem is indicated 

by the solid arrow from [meas]to [a.u]. Similarly, convergence is 

measure does not imply convergence in mean, in general.) 

The reader should verify the implications that are indicated in this 

diagram, and show that no other implications are valid without additional 

hypotheses. 

 

Mean Convergence We have  seen from diagram 9.1 that none of the 

solid arrows ends at [mean].Therefore, we will insert several results here 

tat have mean convergence as  a conclusion. The first one is a version of 

the Mean Convergence. Theorem 8.9 for a sequence that is Catchy in 

measure and satisfies a domination condition. 

 Dominated Convergence Theorem. Suppose that  *( ) ( )nf R I is 

Cauchy in measure on  *, ( )I and R I  are such that for each  .n N  

 (11. )   ( ) ( ) ( ) . . .nx f x x for a e x I     

Then there exists 
*( ) 0.nf R I suchthat f f    

Proof. By the Riesz Subsequence Theorem 9.9, there exists  ( )f M I  

such that  ( )nf converges to  f  is measure. If ( )nf  does not converge in 

mean to f ,there exists  0 0   and a subsequence   

( ) ( ) .K n k oh of f suchthat h f   Since ( )nf converges in measure to 

f , so does its subsequence  ( ).kh  that converges a.e. to  .f  By the Mean 

Convergence Theorem 8.9, the subsequence  ( )( )k rh  converges is mean 

to .f which contradicts that  0kh f  for all  .k N  
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Our next result shows that the mean convergence of a sequence  

*( ) ( )nf in R I in a functions  f  takes place when the sequence  ( )nf  

converges in measure to  f  and to Cauchy in mean. 

  Theorem. Suppose that  *( ) ( )nf R I is Cauchy in mean and converges 

in measure to a function  .f Then 
*( ) 0.nf R I and f f    

Proof. Since 
 

0 , , 0,m nf f as m n given     gN  such that if  

,gm n N  then 

(9.g)                              .m n

I

f f   

Since  nf f  on  ,I  it follows from the Riesz Subsequence. Theorem. 

9.9 that there exist a subsequence  ( ) ( ) ( ),k ng of f and g M I  such that  

[ . .]kg g a e  and [meas] on   I . Since  ( )kg is a subsequence of   ( ),nf

Lemma 9.6(b) implies that  g f  a.e. Now replace  (11. )m kf in by g  

for k sufficiently large and apply Faton‘s Lemma 8.7 to conclude that 

 liminfn k n
k

I I

f f g f


      

For all  n N .Since  0  is arbitrary, we have  0.nf f   Q.E.D 

The Vitali Convergence Theorems 

We conclude this section with two theorems that characterize mean 

convergence for a sequence in  ( ).L I First, it will be seen that if  nf f  

[a.e.] on , [ ]nI then f f mean if and only if the mapping  nE f E  

defined in equation  (10. )  satisfies either of the uniformity conditions 

that we now define. 

Definition. (a) A collection  ( )F L I is uniformly absolutely 

continuous if for every  0   there exists  0   such that if  f F  

and  ( ), ,E M I E then   

: .Ef E f    

(b) A collection  ( )F L I is uniformly integrable if for every  0   

there exists  K K N  such that if   , : ,f Kf F and H f K   then 
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,

, : .

I K

f K

H

f H f    

Intuitively, uniform absolute continuity requires that the integrals  

, ,gf f f F are uniformly small when  E  is small. Similarly, uniform 

integrability requires that the integrals of  f F  over the sets where  f  

is large are uniformly small. 

Vitali Convergence Theorem. I. Let  : [ , ]I a b  be a compact interval 

and let  ( )nf  be a sequence in  ( ) [ . .] .nL I with f f a e on I  

Then the following statements are equivalent. 

(a)  ( ) 0 .nf L I and f f as n     

(b) The set   :nf n N  is uniformly  absolutely continuous. 

(c) The set :nf n N   is uniformly integrable. 

Proof.   ( ) ( )a b  Given  0  there exists  1n  such that if 1,n n then  

1
1 1 ,

2
n E n E nf E f f f f      whence it follows that  

 1

1
, ( ).

2
n E

f E f E f for n n E M I      

 ( ) ( )b a Given  0   let 0  be such that if  

, , . [ . .]n nE n N then f E Since f f a e      on  I and hence on E, 

Fatou‘s Lemma 8.7 implies that  ( )f L I and  

 l iminf .nE En
f f 


   

Egorov‘s theorem 9.3 implies that there exists a set

( )B M I with B    such that  nf f  uniformly on  .I B  Therefore 

 n n n B
f f f f I B f B f       

 2 .nf f I B      

Further, there exists  on  such that if 

0 , ( ) ( ) / ,nn n and x I B then f x f x I      whence we conclude that 
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 ( / ). .nf f I B I I B       

Consequently we have  3nf f   whenever  0.n n  Since  0  is 

arbitrary, assertion (a) follows. 

 ( ) ( )b c Given  0   there exists  0   such that if  E   and  

,n N  then   1. ,...,n ME
f Let I I  be a partition of  I  into 

nonoverlapping intervals with length  1. then 

 
1 1

1
j

M Mb

n n
a I

j j

f f M
 

      

For  .n N Now let  
./g gK K M   If   , : .n K nH f K   then since  

.1 ,H nnk
K f it follows from the inequality 

 ,n K nK H f M   

That  , ,/n KH M K    whence (b) implies that  

, .n n kf H for n N   

(c)  ( ) ( ) 0c b Given  let K be such that   

,

1
.

2
n n Kf H for all n N   Now let  

: / 2 , .K sothat if E and n N      then 

 
,

,
n k

n n n n KE E H E
f f f H


    

 ,

1 1
.

2 2
n Kfn H K E         

Thus (b) is proved.           

We now obtain a version of the Vitali theorem  replacing the hypothesis 

that  nf f  [a.e.] on  I  by the hypothesis that nf f  [meas] on I . 

Vitali Convergence Theorem. II. Let  : [ , ]I a b be a compact interval 

and let  ( )nf be a sequence in  ( ) nL I with f f  in measure on I. 

Then the statements (a),(b),and (c) in 9.13 are equivalent. 
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Proof. The proofs of  ( ) ( ), ( ) ( ), ( ) ( )a b b c and c b    make no 

reference to the convergence of the sequence and do not need any change 

.However, the proof of  ( ) ( )b a  given above uses a.e. convergence and 

needs to be modified. 

If the sequence ( )nf  does not converge in mean to  f , there exists  

0 0   and a subsequence 
'

( )nf such that '

'

0 0
n

f f    for all  '.n

Since the subsequence 
'

( )nf converges in measure to  ,f  the Riesz 

Subsequence Theorem implies that it has a further subsequence  "( )
n

f  

that converges a.e. to .f Hence, by the Vitali Convergence Theorem I, 

the sequence "( )
n

f  converges in mean to ,f  which contradicts the above 

inequality Q.E.D 

Exercises 

9.A. Show that the following sequences do not converge uniformly on 

the indicated intervals, but that they do converge a.e. and hence a.u. 

Given  0,  find a set  E  with  E  such that the convergence is 

uniform on  .I E  

(a)  ( ) : /1 ) [0.1].nf x nx nx on   

(b)  ( ) : 1/(1 ) [0.1].n

nh x x on   

(c)  ( ) : 1/(1 ) [0.2].n

n x x on    

9.B. Same as in Exercise 9.A. Here the functions are 0 at 0.x   

(a)  ( ) : 1/ (1 ) [0.1]n

nf x x x for x    

(b)  ( ) : 1/ (2 ) [0.1]n

ng x x x for x    

9.C. If  
(1/ ,2/ )2, : 1 : 0n n nn let f and f    on the interval  : [0.1].I   

(a)  ( ) : 1/ (2 ) [0.1].n

nf x x x for x    

9.C If  
(1/ ,2/ )2, : 1 : 0n n nn let f and f    on the interval : [0.1].I   

(a) Show that  nf f  everywhere (and therefore a.e.) on  ,I  in mean 

and in measure. 

(b) If  0   is given, show that nf f  uniformly on  [ ,1], so that 

nf f  almost uniformly. 
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(C) Show that there does not exists a null set Z such that nf f  

uniformly on  .I Z  

(d) Show that 2 0.nf f   

9.D Let  : [1/ ,2 / ] : 0n ng n f n on n n and    elsewhere, and let g:=0. 

(a) Show that  ng g  everywhere and therefore a.e.) on  ,I  in mean 

and in measure. 

(b) If  0   is given, show that  ng g  uniformly on  [ ,1],  so that 

ng g  almost uniformly. 

(c) Show that there does not exist a null set Z such that ng g  

uniformly on  .I Z  

(d) Show that  2ng g  0.  

9.E Let  ([ , ]) .nE M a b for n N   

(a) show that  (1 )En
 converges to 0 uniformly on [a,b] if and only if  

nE   for sufficiently large n. 

(b) Show that (1 )En
 converges to 0 almost everywhere on [a,b] if and 

only if lim  lim n nsup E  is a null set. 

(c) Show that (1 )
nE  converges to 0 almost everywhere on [a,b] if and 

only if   lim n nsup E  is  a null set. 

(d) When does (1 )
nE  converge to 0 almost uniformly? 

(e) Show that (1 )
nE  converges tot 0 in measure on [a,b] if and only if   

lim 0.n nE   

(f) When does (1 )
nE  converge to 0 in mean ? 

9.F (a) If  ( )nf  in  ([ , ])M a b  converges to  f  in measure, show that any 

subsequence also converges to f  in measure. 

Check Your Progress 

1. Prove: If a sequence  ( ) ( )nf inM I  is almost uniformly Cauchy on I, 

then there exists a functions ( )f M I such that ( )nf  converges almost 

uniformly and almost everywhere to f. 
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let I be a compact interval and let ( )nf  be a sequence in 

M(I) that converges almost everywhere to  ( ) .f M I on I Then the 

sequence ( )nf  converges almost uniformly to  .f on I  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: If f belongs to  ( )M I . Then given  0   there exists a 

measurable set  E I with E     such that the restriction of  

:f to F I E    is continuous on  F .  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. Prove: (a) If  a sequence  ( ) ( )nf M I  converges almost uniformly 

to  ( ) ,f M I on I then it converges in measure to  .f on I  

(b) If a sequence  ( ) ( )nf R I  then it converges in measure to  .f on I  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

5. Prove: Riesz Subsequence theorem. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

9.5 LET US SUM UP 
 

1. A section ( ) ( )nf in M I  is said to be almost uniformly convergent to a 

function  ; [ , ] 0f on I a b if for every   there exists a measurable set
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( )nE I with E suchthat f    converges to  I uniformly on the set  

I E  in this case we sometimes write [ , ] .nf f a u on I  

2. If a sequence  ( ) ( )nf inM I  is almost uniformly Cauchy on I, then 

there exists a functions ( )f M I such that ( )nf  converges almost 

uniformly and almost everywhere to f. 

3. Let I be a compact interval and let ( )nf  be a sequence in M(I) that 

converges almost everywhere to  ( ) .f M I on I Then the sequence ( )nf  

converges almost uniformly to  .f on I  

4. If f belongs to  ( )M I . Then given  0   there exists a measurable set  

E I with E     such that the restriction of  :f to F I E    is 

continuous on  F .  

5. (a) If  a sequence  ( ) ( )nf M I  converges almost uniformly to  

( ) ,f M I on I then it converges in measure to  .f on I  

(b) If a sequence  ( ) ( )nf R I  then it converges in measure to  .f on I  

6. If  ( ) ( )nf M I  is Cauchy in measure, then there exist a subsequence  

( ) ( )
nn

n nf f M I suchthat f f   almost everywhere, almost uniformly 

and in measure on  ( , )I a b In face the entire sequence  ( )nf converges 

in measure to  f . 

I. Let  : [ , ]I a b  be a compact interval and let  ( )nf  be a sequence in  

( ) [ . .] .nL I with f f a e on I  

Then the following statements are equivalent

( ) 0 .nf L I and f f as n     The set   :nf n N  is uniformly 

absolutely continuous. The set :nf n N   is uniformly integrable. 

9.6 KEY WORDS 
 

convergent to a function   

converges in measure to  f  
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Uniformly absolutely continuous 

9.7 QUESTIONS FOR REVIEW 
 

1. Explain about Egorow‘s theorem. 

2. Prove: Luzin‘s theorem. 

9.8 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor. 

9.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See lemma 9.1 

2. See section 9.3 

3. See section 9.4 

4. See lemma 9.4 

5. See section 9.4 
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UNIT-10 APPLICATIONS TO 

CALCULUS 

 

STRUCTURE 

10.0 Objective 

10.1 Introduction 

10.2 Integration by parts 

10.3 Mean value theorem 

10.4 Bonnet‘s theorem 

10.5 Let us sum up 

10.6 Key words 

10.7 Questions for review 

10.8 Suggestive readings and references 

10.9 Answers to check your progress 

10.0 OBJECTIVE 

 

In this unit we will learn and understand about Integration by parts and 

related theorems, Mean value theorems, Bonnet‘s mean value theorem. 

10.1 INTRODUCTION 

 

Calculus, originally called infinitesimal calculus or "the calculus 

of infinitesimals", is the mathematical study of continuous change, in the 

same way that geometry is the study of shape and algebra is the study of 

generalizations of arithmetic operations. 

It has two major branches, differential calculus and integral calculus; the 

former concerns instantaneous rates of change, and the slopes of curves, 

while integral calculus concerns accumulation of quantities, and areas 

under or between curves. These two branches are related to each other by 

the fundamental theorem of calculus, and they make use of the 

https://en.wikipedia.org/wiki/Infinitesimal
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Arithmetic_operations
https://en.wikipedia.org/wiki/Differential_calculus
https://en.wikipedia.org/wiki/Integral_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
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fundamental notions of convergence of infinite sequences and infinite 

series to a well-defined limit 

Infinitesimal calculus was developed independently in the late 17th 

century by Isaac Newton and Gottfried Wilhelm Leibniz.Today, calculus 

has widespread uses in science, engineering, and economics. 

In mathematics education, calculus denotes courses of 

elementary mathematical analysis, which are mainly devoted to the study 

of functions and limits. The word calculus (plural calculi) is 

a Latin word, meaning originally "small pebble" (this meaning is kept in 

medicine). Because such pebbles were used for calculation, the meaning 

of the word has evolved and today usually means a method of 

computation. It is therefore used for naming specific methods of 

calculation and related theories, such as propositional calculus, Ricci 

calculus, calculus of variations, lambda calculus, and process calculus. 

Modern calculus was developed in 17th-century Europe by Isaac 

Newton and Gottfried Wilhelm Leibniz (independently of each other, 

first publishing around the same time) but elements of it appeared in 

ancient Greece, then in China and the Middle East, and still later again in 

medieval Europe and in India. 

Ancient  

He ancient period introduced some of the ideas that led 

to integral calculus, but does not seem to have developed these ideas in a 

rigorous and systematic way. Calculations of volume and area, one goal 

of integral calculus, can be found in the Egyptian Moscow papyrus (13th 

dynasty, c. 1820 BC); but the formulas are simple instructions, with no 

indication as to method, and some of them lack major components. 

From the age of Greek mathematics, Eudoxus (c. 408–355 BC) used 

the method of exhaustion, which foreshadows the concept of the limit, to 

calculate areas and volumes, while Archimedes (c. 287–

212 BC) developed this idea further, inventing heuristics which resemble 

the methods of integral calculus. 

The method of exhaustion was later discovered independently 

in China by Liu Hui in the 3rd century AD in order to find the area of a 

https://en.wikipedia.org/wiki/Convergence_(mathematics)
https://en.wikipedia.org/wiki/Infinite_sequence
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Mathematics_education
https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Latin
https://en.wikipedia.org/wiki/Calculus_(medicine)
https://en.wikipedia.org/wiki/Calculus_(medicine)
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Ricci_calculus
https://en.wikipedia.org/wiki/Ricci_calculus
https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Process_calculus
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Area
https://en.wikipedia.org/wiki/Egyptian_mathematics
https://en.wikipedia.org/wiki/Moscow_Mathematical_Papyrus
https://en.wikipedia.org/wiki/13th_dynasty
https://en.wikipedia.org/wiki/13th_dynasty
https://en.wikipedia.org/wiki/Greek_mathematics
https://en.wikipedia.org/wiki/Eudoxus_of_Cnidus
https://en.wikipedia.org/wiki/Method_of_exhaustion
https://en.wikipedia.org/wiki/Archimedes
https://en.wikipedia.org/wiki/Archimedes%27_use_of_infinitesimals
https://en.wikipedia.org/wiki/Heuristics
https://en.wikipedia.org/wiki/Chinese_mathematics
https://en.wikipedia.org/wiki/Liu_Hui
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circle. In the 5th century AD, Zu Gengzhi, son of Zu Chongzhi, 

established a method
]
 that would later be called Cavalieri's principle to 

find the volume of a sphere. 

Medieval 

In the Middle East, Hasan Ibn al-Haytham, Latinized 

as Alhazen (c. 965 – c. 1040 CE) derived a formula for the sum of fourth 

powers. He used the results to carry out what would now be called 

an integration of this function, where the formulae for the sums of 

integral squares and fourth powers allowed him to calculate the volume 

of a paraboloid 

In the 14th century, Indian mathematicians gave a non-rigorous method, 

resembling differentiation, applicable to some trigonometric 

functions. Madhava of Sangamagrama and the Kerala School of 

Astronomy and Mathematics thereby stated components of calculus. A 

complete theory encompassing these components is now well known in 

the Western world as the Taylor series or infinite series approximations. 

However, they were not able to "combine many differing ideas under the 

two unifying themes of the derivative and the integral, show the 

connection between the two, and turn calculus into the great problem-

solving tool we have today" 

In Europe, the foundational work was a treatise written by Bonaventura 

Cavalieri, who argued that volumes and areas should be computed as the 

sums of the volumes and areas of infinitesimally thin cross-sections. The 

ideas were similar to Archimedes' in The Method, but this treatise is 

believed to have been lost in the 13th century, and was only rediscovered 

in the early 20th century, and so would have been unknown to Cavalieri. 

Cavalieri's work was not well respected since his methods could lead to 

erroneous results, and the infinitesimal quantities he introduced were 

disreputable at first. 

The formal study of calculus brought together Cavalieri's infinitesimals 

with the calculus of finite differences developed in Europe at around the 

same time. Pierre de Fermat, claiming that he borrowed 

from Diophantus, introduced the concept of adequality, which 

represented equality up to an infinitesimal error term.The combination 

https://en.wikipedia.org/wiki/Zu_Gengzhi
https://en.wikipedia.org/wiki/Zu_Chongzhi
https://en.wikipedia.org/wiki/Cavalieri%27s_principle
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Alhazen
https://en.wikipedia.org/wiki/Fourth_power
https://en.wikipedia.org/wiki/Fourth_power
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Madhava_of_Sangamagrama
https://en.wikipedia.org/wiki/Kerala_School_of_Astronomy_and_Mathematics
https://en.wikipedia.org/wiki/Kerala_School_of_Astronomy_and_Mathematics
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Infinite_series
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Bonaventura_Cavalieri
https://en.wikipedia.org/wiki/Bonaventura_Cavalieri
https://en.wikipedia.org/wiki/The_Method_of_Mechanical_Theorems
https://en.wikipedia.org/wiki/Calculus_of_finite_differences
https://en.wikipedia.org/wiki/Pierre_de_Fermat
https://en.wikipedia.org/wiki/Diophantus
https://en.wikipedia.org/wiki/Adequality
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was achieved by John Wallis, Isaac Barrow, and James Gregory, the 

latter two proving the second fundamental theorem of calculus around 

1670. 

The product rule and chain rule,the notions of higher 

derivatives and Taylor series, and of analytic function
d
were used by Isaac 

Newton in an idiosyncratic notation which he applied to solve problems 

of mathematical physics. In his works, Newton rephrased his ideas to suit 

the mathematical idiom of the time, replacing calculations with 

infinitesimals by equivalent geometrical arguments which were 

considered beyond reproach. He used the methods of calculus to solve 

the problem of planetary motion, the shape of the surface of a rotating 

fluid, the oblateness of the earth, the motion of a weight sliding on 

a cycloid, and many other problems discussed in his Principia 

Mathematica (1687). In other work, he developed series expansions for 

functions, including fractional and irrational powers, and it was clear that 

he understood the principles of the Taylor series. He did not publish all 

these discoveries, and at this time infinitesimal methods were still 

considered disreputable. 

These ideas were arranged into a true calculus of infinitesimals 

by Gottfried Wilhelm Leibniz, who was originally accused 

of plagiarism by Newton  is now regarded as an independent inventor of 

and contributor to calculus. His contribution was to provide a clear set of 

rules for working with infinitesimal quantities, allowing the computation 

of second and higher derivatives, and providing the product 

rule and chain rule, in their differential and integral forms. Unlike 

Newton, Leibniz paid a lot of attention to the formalism, often spending 

days determining appropriate symbols for concepts. 

Today, Leibniz and Newton are usually both given credit for 

independently inventing and developing calculus. Newton was the first to 

apply calculus to general physics and Leibniz developed much of the 

notation used in calculus today. The basic insights that both Newton and 

Leibniz provided were the laws of differentiation and integration, second 

and higher derivatives, and the notion of an approximating polynomial 

series. By Newton's time, the fundamental theorem of calculus was 

known. 

https://en.wikipedia.org/wiki/John_Wallis
https://en.wikipedia.org/wiki/Isaac_Barrow
https://en.wikipedia.org/wiki/James_Gregory_(astronomer_and_mathematician)
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Product_rule
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Higher_derivative
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https://en.wikipedia.org/wiki/Taylor_series
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https://en.wikipedia.org/wiki/Plagiarism
https://en.wikipedia.org/wiki/Multiple_discovery
https://en.wikipedia.org/wiki/Product_rule
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https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Physics
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When Newton and Leibniz first published their results, there was great 

controversy over which mathematician (and therefore which country) 

deserved credit. Newton derived his results first (later to be published in 

his Method of Fluxions), but Leibniz published his "Nova Methodus pro 

Maximis et Minimis" first. Newton claimed Leibniz stole ideas from his 

unpublished notes, which Newton had shared with a few members of 

the Royal Society. This controversy divided English-speaking 

mathematicians from continental European mathematicians for many 

years, to the detriment of English mathematics. A careful examination of 

the papers of Leibniz and Newton shows that they arrived at their results 

independently, with Leibniz starting first with integration and Newton 

with differentiation. It is Leibniz, however, who gave the new discipline 

its name. Newton called his calculus "the science of fluxions". 

Since the time of Leibniz and Newton, many mathematicians have 

contributed to the continuing development of calculus. One of the first 

and most complete works on both infinitesimal and integral calculus was 

written in 1748 by Maria Gaetana Agnesi.  

We will now apply the theory of the (generalized Riemann) integral that 

we have developed to obtain a number of results that are familiar from 

calculus, except that the hypotheses are much weaker than customary. 

This section is divided into four parts. In the first part, we will obtain 

very general versions of the Integration by Parts formula. We then apply 

these results to obtain various versions of the Mean Value Theorems. 

The third part is concerned with a theorem due to Hake that shows that 

the generalized Riemann integral does not admit (neither does it need) an 

extension analogous to the ―improper integral‖ that is familiar from 

calculus. This result can also be viewed as providing a method for the 

evaluation of integrals. In the final part of this section new will consider 

integrands that depend on a parameter, and obtain some results that can 

be used in handling such integrals. 

In this section new will limit our discussion to the case of a compact 

interval  : [ , ]I a b . It will be seen later that most of these results can be 

extended to unbounded intervals. 

Integration by parts 

https://en.wikipedia.org/wiki/Newton_v._Leibniz_calculus_controversy
https://en.wikipedia.org/wiki/Newton_v._Leibniz_calculus_controversy
https://en.wikipedia.org/wiki/Method_of_Fluxions
https://en.wikipedia.org/wiki/Nova_Methodus_pro_Maximis_et_Minimis
https://en.wikipedia.org/wiki/Nova_Methodus_pro_Maximis_et_Minimis
https://en.wikipedia.org/wiki/Royal_Society
https://en.wikipedia.org/wiki/Method_of_fluxions
https://en.wikipedia.org/wiki/Integral_calculus
https://en.wikipedia.org/wiki/Maria_Gaetana_Agnesi
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This familiar result is a consequence of the ―product Rule‖ for 

differentiation. It  will be convenient to use the notation  

 : ( ) ( ),H H H

     

Where H  is a function defined on an interval that contains the points  

,   

We first consider the case where the functions  
*, ( )f g R I  have 0-

primitives F,G, since this is the case most commonly encountered in 

elementary applications, and since the proof is very easy. We will show 

that the product FG is a c-primitive of the function   Fg fG  and that   

*( )gF R I  if and only if  *( ).f G R I  In this case the familiar formula 

holds. 

10.2 INTEGRATION BY PARTS  
 

If  *, ( )f g R I  have c-primitives F,G on an interval  

: [ , ],I a b then Fg fG   has a c-primitive FG and therefore belongs to  

*( ),R I and  (12. )    ( ) | .
b

b

a
a

Fg fG FG   

Moreover, Fg belongs to  *( )R I  if and only if  fG  belongs to *( )R I  in 

which case. 

 (12. )   | .
b b

b

a
a a

Fg FG fG    

Proof. By hypothesis,  F and G  are continuous on  I  and there exists 

countable sets  f gC and C of I  such that  

'

. ,( ) ( ) ( ) ( ) :i

f g f gF x f x for x I C and G x g x for x I C Let C C C       

so that C is a countable set. The Product Rule for differentiation implies 

that  (12. )   ' ' '( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )FG x F x G x F x F x g x f x G x     

For  .x I C   The Fundamental Theorem 4.7 implies that 

'( )Fg fG FG   belongs to  *( )R I  and has integral  

| , (12. ).b

aFG providing   

Theorem 3.1 implies that  *( )Fg R I  if and only if  *( ).fG R I  

Equation  (12. ) now follows from  (12. ).  Q.E.D. 
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We now present a theorem that gives a definitive form of the Integration 

by Parts formula in terms of indefinite integrals  

*( ) : ( ) : , ( ),
z x

c c
F x f and G x g of f g R I     rather than c-primitives of 

thee functions. This proof. Taken from [P-1;p.110] is considerabley more 

involved than that of 10.1 

 10.2 Integration by parts *. Let  *, ( )f g R I and let F,G be their 

respective indefinite integrals with base point  .c I  

(a) Then  Fg fG  belongs to  *( )R I  and has FG as indefinite integral 

with base point c. Therefore equation  (10. )  holds. 

(b) Moreover, Fg  belongs to *( )R I  if and only if  fG  belongs to *( )R I  

in which case equation (10. )  holds. 

Proof. We will treat the case where  c  , leaving the general case as 

an exercise. 

Theorem 4.11 implies that the indefinite integrals F,G are continuous and 

hence bounded on   : [ , ]I a b  and we let  0M b a    be such that  

( ) ( ) . 0,F x Mand G x M for x I Given     we conclude from the 

continuity of F and G that there exists a gauge  on I  such that if  

, ( ),x I x t t then    

 (12, ) ( ) . ( ) ( ) | / 4 | ( ) . ( ) ( ) | / 4 .f t G t G x M and g t F t F x M     

Since  *, ( ),f g R I  we may also assume that the gauge    is such that 

if   
1

: ( 1, )
b

i i i i
P x x t is a 
   fine partition of  ,I  then 

 | ( ; ) ( ) | / 8S f P F b M   and  | ( ; ) ( ) | / 8S g P G b M   

It follows from Corollary 5.4 of the Saks-Henstock Lemma that 

 
1(12. )   1)

1

| ( )( [ ( ) ( 1)] | / 4 ,
n

i i i i i

i

f t x x F x F x M



      

2(12. )  1)

1

| ( )( [ ( ) ( 1)] | / 4 .
n

i i i i i

i

g t x x G x G x M



      

But, since we have 
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 1 1( ) ( ) ( ) ( )i i i iF x G x F x G x   

 1 1 1( ) ( ) ( ) ( )[ ( ) ( )]i i i i i iF x G x G x G x F x F x       

And  0 0( ) 0 ( ), exp ( ) ( )F x G x wecan and F b G b    in a telescoping 

sum: 

 1 1

1

( ) ( ) [ ( ) ( ) ( ) ( )]
n

i i i i

i

F b G b F x G x F x G x 



   

  1 1 1

1

( )[ ( ) ( )[ ( ) ( )]
n

i i i i i

i

F x G x G x F x F x  



    

Using the above expression, we obtain 

 
.

( ; ) ( ) ( )S Fg fG P F b G b   

 1 1 1

1

( )[ ( ) ( )[ ( ) ( )]
n

i i i i i

i

F x G x G x F x F x  



    

1(12. )  1

1

[ ( ) ( ) ( )]( ) ( ) ( )
n

i i i i i

i

F t g t f t x x F b G b



     

2(12. )  1 1

1

[ ( ) ( )( ) ( 1)[ ( ) ( )]
n

i i i i i i i

i

f t G t x x G x F x F x 



      

 But, since  ( ) ( ) [ ( ) ( )], (12. )i i i i iF t F x F t F x theterm     is dominated 

by 

 
1(12. )   1 1

1

| ( ) | . | ( )( ) | ( ) ( )] |
n

i i i i i i

i

F x g t x x G x G x 



    

2(12. )   
1

| ( ) | . | ( ) ( ) | .( 1).
n

i i i i i

i

g t F t F x x x


     

We now use the fact that  2 1| ( ) | (12. ) (12. ),iF x M and in   and the 

second inequality in  (12. ) in  
2(12. )n  to conclude that 

1(12. )  is 

dominated by  

. ( ) .
4 4 4 4 2

M b a
M M

    
      



Notes 

45 

Using 1 1( ) ( ) [ ( ) ( )],i i i iG t G x G t G x    a similar argument shows that  

2(12. ) is also dominated by  
1

.
2
  Therefore, we inter that if  

.

,P   

then 

 
.

| ( ; ) ( ) ( ) | .gS F fG P F b G b     

But since  0   is arbitrary, we conclude that  Fg fG  belongs to  

*( )R I with integral  ( ) ( ).F b G b  

Since b can be replaced by an arbitrary point  ,x I  it follows that

Fg fG has FG  as indefinite integral with base point   . 

The assertion in part (b) follows as before.  Sometimes it is convenient to 

write formula  (12, ) in the ―calculus form‖: 

 (12. )   ( ) ( ) ( ) ( ) .
b b

b

a
a a

F x g x dx FG f x G x dx    

We recall that in calculus courses one often uses the notation 

 ( ) : ( ),u x F x     '( ) : ( ) ( ) ,d x g x dx G x dx    

So that we have 

 '( ) ( ) ( ) ,d x F x dx f x dx      ( ) ( ).v x G x  

Hence equation (12. ) takes the form 

 ( ) ( ) ( ) ( ) ( ) ( ),
b b

b

a
a a

u x d x u x x x du x     

Which is often abbreviated as 

 .
b b

b

a
a a

ud u du      

The reader is certainly familiar with the technique of integrating by parts, 

so we will not given any routine examples here. Our first example shows 

that formula   (12. ) does not hold for the Lebesgue integral unless it is 

assumed that both  Fg and fG belong to  ( ).L I  The second example 

shows that (12. )  does not hold unless at least one (and hence both) of 
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Fg and fG  belongs to  *( ).R I  The third example applies Theorem 10.2 

to an interesting integral. 

10.3 Examples. (a) it is possible that  ( ).Fg L I but  ( ).fG L I  

Let  2( ) : ( ) : cos( / ) (0,1] (0) : 0.F x x and let G x x x for x and G    Then 

F is a primitive of  ( ) : 1f x and G  is e-primitive on  : [0,1]I    with 

exceptional set   0 of the function. 

 2 2 2( ) : cos( / ) 2 / )sin( / ) (0,1]g x x x x for x      

And  (0) : 0.g   Moreover, the product  FG  is a primitive of the function 

 ' 2 2( ) ( ) 2 cos( / ) (2 / )sin( / )FG x x x x x     for  (0,1]x  And  

'( ) (0) 0.FG    In this case the product  fG belongs to  ( ).L I  

However,  Fg  has the form  

2 2( )( ) cos( / ) (2 / )sin( / )Fg x x x x x    for  (0,1].x  

Now the first term belongs to  ( ),L I but it is seen i Exercise 10.C that the 

second term does not belong to ( ).L I  Therefore  ( );Fg L I however, 

both  *( ).Fg and fGbelong to R I  

(c) It is possible that neither of the functions  Fg and fG belongs to  

*( ).R I  

Let ,F G  be defined on  : [0,1] ( ) : 0 : (0)I by F x G and    

 1/ 2( ) : sin( / ),F x x x   1/ 2( ) : cos( / )G x x x for  (0,1].x  

Then both ,F G are continuous on  : [0,1];I  moreover 

 ' 1/ 2 3/ 21
( ) sin( / ) cos( / )

2
F x x x x x     for (0,1]x   

So that F is a c-primitive of  
': ( (0) : 0)f F where f  with exceptional 

set   0 .Therefore, if  (0,1],x then we have 
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 21
( ) ( ) sin( / ) cos( / ) ( / ) cos ( / )

2
f x G x x x x x     , 

Where we have used the identities  

21 1
sin cos sin 2 ,cos (cos 2 1).

2 2
        

Now the first term is bounded and measurable and hence is in  ( ),L I and 

the second term is seen to be in  *( )R I .The fact that  *( )Fg R I  follows 

from this fact, or can be proved in the same way. (See Exercise 10.D.) 

Thus the products fG and Fg do not belong to *( )R I even though their 

sum does. 

(c) If  *([ , ]),f R a b  we will show that 

 (12, )i   
1

( )cos . 0 ,
b

a
f x n xdx as n

n
   

and similarly if sin  nx  is replaced by sin nx  (see Exercise 10.E). To 

prove the first assertion, we will make use of the Riemann-Lebesgue 

Lemma 9.17 that if  ([ , ]),L a b then 

 ( )sin 0 ,
b

a
x nx dx as n    

And similarly if sin nx is replaced by cos nx . 

To prove (12, )i ,we let  ( ) : ( ) ( ) : sin .
x x

F x f x dx and G x nx dx
 

  

Since  F  is continuous and  ( ) : ( ) sin ,g x G x nx then Fg  is continuous 

and belongs  to   *([ , ]).R a b Theorem 10.2 then implies that  

*([ , ])fG R a b and that 

 
1 1

( )cos ( )cos ( )sin .
b b

a a
f x nxdx F b nb F x nx dx

n n
    

The Riemann-Lebeesgue Lemma applied to  (12. ).F now gives i   

10.3 MEAN VALUE THEOREMS 
 

We will now establish the important Mean Value Theorems in a high 

level of generality. In order to prove the Second Mean Value Theorem, 

we need to know that certain products of functions are integrable. In 
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particular, we will use the Multiplier Theorem 10.10, which asserts that 

the product of a function in *( )R I  and a function in BV(I) is integrable. 

For information concerning the history of these results, see Hobson [Hb-

1;p.616ff]. 

 10.4 First Mean Value Theorem. If f is continuous on  

*: [ , ] ( )I a b and if p R I   does not change sign on I, then there exists  

I  such that 

(10.k)   ( ) .
b b

a a
fp f p   

Proof. In fact, ( )p L I so that  ( ), 0,fp L I If p  then  

, : inf( ( ): ,mp fp Mp wherem f x x I    and   : sup ( ) : ,M f x x I   

so that 

 .
b b b

a a a
m p fp M p     

If 0If p  ,he result is trivial; if not, it follows immediately from the 

Bolzano Intermediate Value Theorem. If  0,p   the argument is similar. 

 Q.E.D 

 10.5 Second Mean Value Theorem. If  *( )f R I and g is monotone on  

: [ , ],I a b then there exists  I   such that 

  (12. )   ( ) ( ) .
b b

a a
fg g a f g b f




     

Proof. It follows from the Multiplier Theorem 10.10 that  *( ),fg R I  

and from the Integration by Parts formula ( . )H  for the Riemann-

Stieltjes integral that  

 | .
b b b

b

a
a a a

fg gdF gF f      

If we apply the Mean Value Theorem for the Riemann-Stieltjes integral  

(Theorem H.6), we conclude that there exists  I  such that the term on 

the right equals 

 
| ( ) | ( )[ ( ) ( )] ( )[ ( ) ( )].

( ) ( ) .

b b

a a

b

a

gF F g g a F F a g b F b F

g a f g b f




      

  
 

If we combine these expressions, we obtain (12. ) .  Q.E.D. 

Proofs of special cases of this theorem not using the Riemann-Stieltjes 

integral are outlined in the exercises. 
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10.4 BONNET’S MEAN VALUE THEOREM 
 

If  *( ) 0f R I and g   is increasing  on  ,I then there exists  I   such 

that  (12. )   ( ) .
b b

a
fg g b f


   

Proof. Define  
1 :g I  bby  

1 1( ) : 0 ( ) : ( ) ( , ].g a and g x g x for x a b    

Now apply the Second Mean Value Theorem 10.5 Q.E.D 

There are analogous forms of Bonnet‘s Theorem for decreasing and for 

negative functions (see the exercises).  

10.7 Examples. (a) If  f is not continuous, then the First Mean Value 

Theorem 10.4 may fail. 

Let

( ) : 1 | 1,0) ( ) : 1 [0,1] : 1 : [ 1,1].f x for x and f x for x and letp on I        

 Then f  is not continuous at 0, but  *0 ( ).p and f p R I   However,  

1 0 2, (12. )If fp and f p sothat k   does not hold. 

(b) If  p  changes sing, then the First Mean Value Theorem 10.4 may 

fail. 

Indeed, let   ( ) : : ( ) : [ 1,1],f x x p x on I    so that  f is continuous on  I

and  *, ( ).p fp R I  However,  

2/3 0, (12. ) .I If fp and f p sothat k fails   

(c) If g  is not monotone, the Second Mean Value Theorem 10.5 may 

fail. Let 2( ) : 1 : ( ) : [ 1,1].f x x g x onI     Then *( )f R I and, although 

g is not monotone,  ( ).g BV I However, 2 2( 1) 16 /15I If fg f x dx  

while  ( 1) (1) 0, (12. )g g sothat     does not hold. 

(d) If g  is not increasing, then Bonnet‘s Theorem 10.6 may fail. 

Let f and g be as in (c). 

(e) If  
10 , | sin | 2(1/ 1/ ).

b

a
a b then x xdx a b     

(f) If  1( ) : : [ , ],g x x on I a b then g  is monotone on ,I so the Second 

Mean Value Theorem 10.5 implies there exists   such that  

1 sin (1/ ) cos cos (1/ )[cos cos ].
b

a
x x dx a a b b      whence the 

inequality follows. 
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(g) The inequality in (e) (and the Cauchy Condition for the limit) 

establishes the existence of the important limit: 

 (12. )v    
0 0

sin sin
lim .

T

T

x x
dx dx

x x




 

 

Check Your Progress 

1. Prove: If  *, ( )f g R I  have c-primitives F,G on an interval  

: [ , ],I a b then Fg fG   has a c-primitive FG and therefore belongs to  

*( ),R I and  (12. )    ( ) | .
b

b

a
a

Fg fG FG  Moreover, Fg belongs to  

*( )R I  if and only if  fG  belongs to *( )R I  in which case. 

 (12. )   | .
b b

b

a
a a

Fg FG fG    

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let  *, ( )f g R I and let F,G be their respective indefinite 

integrals with base point  .c I  

(a) Then  Fg fG  belongs to  *( )R I  and has FG as indefinite integral 

with base point c. Therefore equation  (10. )  holds. 

Moreover, Fg  belongs to *( )R I  if and only if  fG  belongs to *( )R I  in 

which case equation (10. )  holds. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: If  *( ) 0f R I and g   is increasing  on  ,I then there exists  

I   such that  ( ) .
b b

a
fg g b f


   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

10.5  LET US SUM UP 
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1. If  *, ( )f g R I  have c-primitives F,G on an interval  

: [ , ],I a b then Fg fG   has a c-primitive FG and therefore belongs to  

*( ),R I and  

 (12. )    ( ) | .
b

b

a
a

Fg fG FG   

Moreover, Fg belongs to  *( )R I  if and only if  fG  belongs to *( )R I  in 

which case. 

 (12. )   | .
b b

b

a
a a

Fg FG fG    

2. Let  *, ( )f g R I and let F,G be their respective indefinite integrals 

with base point  .c I  

(b) Then  Fg fG  belongs to  *( )R I  and has FG as indefinite integral 

with base point c. Therefore equation  (10. )  holds. 

Moreover, Fg  belongs to *( )R I  if and only if  fG  belongs to *( )R I  in 

which case equation (10. )  holds. 

3. If f is continuous on  *: [ , ] ( )I a b and if p R I   does not change sign 

on I, then there exists  I  such that 

   ( ) .
b b

a a
fp f p   

4. If  *( ) 0f R I and g   is increasing  on  ,I then there exists  I   

such that ( ) .
b b

a
fg g b f


   

10.6 KEY WORDS 
 

Integration by parts 

Mean value theorem 

Bonnet‘s mean value theorem 

10.7 QUESTIONS FOR REVIEW 
 

1. Explain about Mean value theorem 

2. Prove: Bornet‘s Mean value theorem 
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10.8 SUGGESTIVE READINGS AND 

REFERENCES 

    1. A. Modern theory of Integration - 

Robert G.Bartle 

   2. The elements of Integration and 

Lebesgue Meassure 

   3. A course on integration- Nicolas Lerner 

   4. General theory of Integration- Dr. E.W. 

Hobson 

   5. General theory of Integration- 

P.Muldowney 

 6. General theory of functions and Integration- 

Angus E.Taylor 

 

10.9 ANSWERS CHECK YOUR 

PROGRESS 
 

1. See section 10.3 

2. See section 10.3 

3. See section 10.4 
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UNIT-11 IMPROPER INTEGRALS 

 

STRUCTURE 

11.0 Objective 

11.1 Introduction 

11.2 Hakes theorem 

11.3 Integrals with parameter 

11.4 Let us sum up 

11.5 Key words 

11.6 Questions for review 

11.7 Suggestive readings and references 

11.8 Answers to check your progress 

11.0 OBJECTIVE 

 

In this unit we will learn and understand about Improper integrals, Hakes 

theorem, Integrals with parameter and theorems. 

11.1 INTRODUCTION 

 

In mathematical analysis, an improper integral is the limit of a definite 

integral as an endpoint of the interval(s) of integration approaches either 

a specified real number,  ,   or in some instances as both endpoints 

approach limits. Such an integral is often written symbolically just like a 

standard definite integral, in some cases with infinity as a limit of 

integration. 

By abuse of notation, improper integrals are often written symbolically 

just like standard definite integrals, perhaps with infinity among the 

limits of integration. When the definite integral exists (in the sense of 

either the Riemann integral or the more advanced Lebesgue integral), this 

https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Limit_(mathematics)
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Definite_integral
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Abuse_of_notation
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Lebesgue_integral
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ambiguity is resolved as both the proper and improper integral will 

coincide in value. 

Often one is able to compute values for improper integrals, even when 

the function is not integrable in the conventional sense (as a Riemann 

integral, for instance) because of a singularity in the function or because 

one of the bounds of integration is infinite. 

We will now prove a remarkable result that was established for the 

Perron integral by he in rich Hake in 1921. In effect it asserts that there is 

no such thing  as an ―improper integral‖ for the generalized Riemann 

integral. By this we mean that any function that has an ―improper 

integral‖ is already integrable. However, the limiting procedure may be 

useful in evaluating the integral, as we will see. 

We will state this result only for the case of the right endpoint. We leave 

it to the reader to formulate the statement from the left endpoint, or 

where the difficulty occurs at an interior point of the interval. In Section  

16 we will establish Hake‘s Theorem for infinite intervals in R. 

11.2 HAKE’S THEOREM 
 

 Let  : [ , ] : .I a b and f I R    Then the function  *( )f R I if and only if 

there exists A R such that for every  ( , )c a b the restriction of  

[ , ]f to a c is integrable. Moreover, by Theorem 4.11 (see also Theorem 

5.6),the indefinite integral of  f with base point  c is continuous at b, so 

that 

lim .
b c

a ac b
f f

 
   

Hence the statement follows with  : .IA f f  

 ( )  Suppose there exists  A R such that for every  ( , )c a b the 

restriction of  f belongs to  *[( , )] (12, )R a c and  holds. Now let  0( ) kkc 


be a strictly increasing sequence with  

0 lim . 0,k ka c and b c Given let r N    be such that  

/(| ( ) | 1)rb c f b   and such that if  [ , ),rt c b then 

 .
t

a
f A    

https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Singularity_(mathematics)
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If  , kk N let  be a gauge on  : [ 1, ]k k kI c c  such that if  kP is any  k

fine partition of  kI then. 

 ( ; ) / 2 .

k

k

k

I

S f P f    

Without loss of generality, we may assume that  

(i)  0 1 0

1
( ) ( ), 1,

2
i c c c and if k that     

(ii)   1 1 1

1 1
( ) min ( ), ( ), ( ) .

2 2
k k k k k k k kc c c c c c   

 
   

 
 

(iii)  1 1 1,

1 1
( ) min ( ), ( ) ( ).

2 2
k k k k kt t c c t for t c c   

 
    

 
 

We now define  on I by  

1,( ) [ ),
( ) : ,

.

k k k

r

t if t c c
t k N

b c if t b





 

 
 

Thus    is a gauge on   
.

1, 1
: (| [ ], )

n

i t i i
I and welet P x x t 

  be a  -fine 

partition of  .I Since b does not belong to any interval  ,kI  the last 

subinterval  
.

1,[ ]nx b in P  must have its tag  .nt b  But since  
.

,P   this 

implies that  

  
. . . . .

1 0 1 1 0 1, 11
: [ , ],..., : [ 2, ], : [ ].a a nv a

Q P c c Q P c c Q P c x  
        

Since such  

Now let  N   be the smallest positive integer such that  1 0 ,nx c   so 

that  . 1,..., 1,r s If k s   then condition (iii) implies that the point  kc  

must be a tag for any subinterval in t T that contains  kc .Using the 

right-left procedure, we may assume that the points  0 0 1,...,c c  are also 

points in 
.

P . We let 

. . . . .

1 0 1 1 0 1, 11
: [ , ],..., : [ 2, ], : [ ].a a nv a

Q P c c Q P c c Q P c x  
        

Since each  
.

( 1,..., 1] kk
Q k s is a  -fine partition of  ,kI  then 

 
1

1

.

( ; ) / 2 .
n

s

x

s
c

S f Q f 
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If   
.

ss
Q is a -fine sub partition of  ,sI the Saks-Henstock Lemma 5.3 

implies that 

 
1

1

.
.

( ; ) / 2 .
n

s

x

s
c

S f Q f 




  

If  
..

1 1: ([ , ], ) , ( ; ) ( )( ),b

n ns
Q x b b then S f Q f b b x    whence it follows 

that  
. .. . . .

1 1 1
| ( ; ) | ( ) ( ) . ... ,b b

n s s
S f Q f b b x Since P Q Q Q Q 

     

we have 

 
.. .

1

1

| ( ; ) | | ( ; ) ( ; ) |
s

b

i

S f P A S f Q S f Q A


     

 
.. 1

1

1

| ( ; ) | | ( ; ) |
s zn

b

a
i

S f Q f S f Q




     

 
1

| | 3 .
zn

a
f A 



    

But since  0 is arbitrary, then  *( )f R I with integral A. Q.E.D 

We now give some rather straightforward applications of Hake‘s 

Theorem, where the limit s taken at the left endpoint. 

Examples. (a) Consider the integral  
1

0
.rx dx for r R  

Let  ( ) : (0,1] (0) : 0. 1 0,r

r r rg x x for x and g Ifr then g     has the 

function  1 /( 1)rx x r   as a c-primitive with exceptional set either  

 0 .or Hence  *[(0,1)]rg R and 

 (12.0)   
1

1 1

0
0

/( 1) | 1/( 1) 1.r r

rx dx x r r for r      

(b) consider the integral  
1

0
1.rx dx for r   

The function  1x x has x in x as a primitive on any interval [c,1] 

with  0 1.c   But since 

  
1

1 1

0
|cx dx In x Inc     

as  0 ,c   we conclude from Hake‘s Theorem that  1 *([0,1]).x R   

Since  11 (0,1),r rx x when r and x wehave x x    so that  

*([0,1]),rx R  We give another proof of that fact here. 
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Indeed,  2 '(1/ )sin( / ) [(1/ )cos( / )] [ ,1] 1.x x x for x c witho c       

thus we have 

 
1

2(1/ )sin( / ) (1/ )[cos cos( / )].
c

x x dx c     

Since  cos( / )c does not have a limit as  0 ,c    it follows from 

Hake‘s Theorem that  2 *(1/ )sin( / ) ([0,1]).x x R   

(d) Consider the integral  
1

2(1/ )sin( / ) (1/ )[cos cos( / )].
c

x x dx c      

Since  cos( / )c does not have a limit as  0 ,c   it follows from Hake‘s 

Theorem that  2 *(1/ )sin( / ) ([0,1]).x x R   

(c) Consider the integral  
1

0
1.rx in x dx for r    

If s:=r+1>0, the integration by parts formula leads us to find that  

 1 1( ) : [ ] (0,1],s sF x s x In x s x for x     

And F(0):0 is a c-primitive with exceptional set {0}, where we have used 

L‘ Hospitals‘ Rule to show that F is continuous at x=0 when s>0.A 

calculation shows that if 0<c<1, then 

  
1

2 1

0
[ 1] .r s sx in x dx s c s c Inc     

Another application of L ‘Hospital‘s Rule shows that, if  1,r   there is 

a limit as  0 , rc so x In x   belongs to  

* 1 2

0([0,1]) ( 1) .rR and f x In xdx r     

(e) Consider the integral  
1 1

0f x In x dx
 

The function  21
( ) ( ) (0,1]

2
G x inx for x   has the property that  

' 1( ) (0,1].G x x In x for x  Hence ,if  0 1,c then   

 
1

1 21
( ) 0 .

2c
x in x dx Inc as c      

We conclude from Hake‘s Theorem that the function  1x in x  does 

notbelong to  *([0,1]).R  

11.3 INTEGRANDS WITH A PARAMETER 
 

We now consider integrals where the integrand depends on a parameter. 

For the sake of simplicity, we will treat the case where the domain of the 
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parameter is a bounded interval   : [ , ],T c d  but many of our results can 

be extended to a consider ably more general parameter domain without 

difficulty. 

The next several results make use of the following hypothesis: 

 Hypothesis (H).Let the function :f I T  R be such that, for each 

t T , the function ( , )x f x t  is in R, in which case the function 

:F I R  given by 

(12. )    R 

 

Is well defined. We want to show that various properties of ( , )t f x t  

(e.g., limit, continuity, differentiability) carry over to similar properties 

of .F  

The case where f (and /tf f t   ) are continuous on I T  is relatively 

familiar and will be outlined in the Exercises. However, it often happens 

that difficulties occur at the endpoints of the interval I . These 

difficulties are usually handled by assuming that the integral (12. )  

converges uniformly with respect to t T . Arguments of this sort are to 

be found in many books dealing with this subject. In this section, we will 

treat the case where the hypotheses of joint continuity and uniform 

convergence are replaced by domination conditions. 

  Limit Theorem. Let   f I T R satisfy Hypothesis (H), and suppose 

that: 

(i) There exists  T  such that  ( , ) lim ( , ) .tf x i f x t for all x I    

(j) There exist functions  *, ( )R I  such that  

 ( ) ( , ) ( )x f x t w x    for all  , .x I t T   

Then the function F in  (12. ) exists on T and  ( ) lim ( ) :gF F t   that 

is  (12. )p    ( , ) lim ( , ) .
b b

a at
f x f x t dx





   

Proof. Hypothesis (H), condition (j), and the Integrability Theorem 9.1 

imply that  ( , )x f x t belongs to  *( )R I  for each  .t T  Hence the 

function F given in (12. ) is defined on   T . Now let  ( )nt be any 

sequence in T  coverging to   .If we let ( ) : ( , )n
n

x f x t  and  
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( , ) ,f x for x I


 it follows from (i),(f), and the Dominated  Convergence 

Theorem 8.8 that 

( ) ( ) lim ( ).
b

n
a n

F f x dx D t



   

   

But since  ( )nt is an arbitrary sequence in  T  converging to  ,  we inter 

that  ( ) lim ( ).tF r F t  Q.E.D. 

Continuity Theorem. Let  :f I T R   satisfy Hypothesis (H) and 

suppose that: 

(i‘) The function  ( , )t f x t  is continuous on  T for each  : [ , ].x I a b   

(j‘) There exists functions *, ( )R I suchthat   

 ( ) ( , ) ( )x f x t x    for all  , .x I t T   

Then the function  : F T R  given by  (12. ) is continuous on  .T  

Proof. We apply the Limit Theorem 11.11 to each point in .T  Q.E.D. 

We now obtain a result showing that the derivative of  F can be found as 

an integral of the partial derivative  : / .tf f t  Thus, one can 

differentiate  (12. )F in   by ‗differentiating under the integral sign‖, 

provided the partial derivative  tf  is dominated by an integrable 

function. 

 Differentiation Theorem. Let  :f I T R   satisfy Hypothesis (H) 

and suppose that: 

(i‖) There exists  T   such that the function *( , ) sin ( ).x f x i R I  

(j‖) the partial derivative  .tf exissts on I T  

 
*( )K There exist  *, ( )R I  such that 

 ( ) ( , ) ( ) , .tx f x t w x for all x I t T      

Then we conclude that 
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(a) The function  *( , ) ( ) .x f x t is in R I for eacht T   

(b) The function  *( , ) ( ) .tx f x t isin R I for eacht T   

(c) The function  (12. )F in is defined end differentiableonT and  

 (12. )  ( ) ( , ) .
b

t
a

F t f x t dx for all t T   

Proof. Let he is hypothesis  *( )I . If  , ,x T t   are fixed, then it 

follows from  *( )f  and the Mean Value Theorem of calculus that there 

exists a point ( , , ) t anx s x t between d   such that 

 ( , ) ( , ) ( ) ( , ).tf x t f x t f x s     

Than, if  ", ( )t then k imples that  

 ( , ) ( ) ( ) ( , ) ( , ) ( ) ( ).f x t x f x t f x t x            

While if ", ( )t r then k  imples that 

 ( , ) ( ) ( ) ( , ) ( , ) ( ) ( ).f x t x f x t f x t x            

From Hypothesis (H), the above inequalities, and the Intergrability 

Theorem 0.1, we conclude that for each  ,t T  the function  ( , )x f x t

belongs to  *( ).R I  This is conclusion (s). 

Now let t T be fixed and let  ( )nt be any sequence in  T  with  

, .n nt t t t  It follows from  "( )f  that 

 
( , ) ( , )

( , ) lim .n
t

n
n t

f x t f x t
f x t for x I

t



   

Hypothesis (H) and the Measurable Limit Theorem 9.2 imply that the 

function  ( , )ix f x t  is measurable on  I . From  "( )k and the 

Integrability Theorem 9.1, we conclude that  

*( , ) ( ),ix f x t isin R I Sincet T   is arbitrary, statement (b) follows. 

If  t T is fixed and  ( )nt is as before, assumption  "( )f  and another 

application of the Mean Value Theorem imply that 

 
( , ) ( , )

( , )n
t n

n

f x t f x t
f x s

t t





 

Where  ( , , )n n ns s x t t  lies between  ", ( )nt and t so k  implies that 

 
( , ) ( , )

( ) ( )n

n

f x t f x t
x

t t
  


 


 

But since we have 
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( ) ( ) ( , ) ( , )

.
b

n n

a
n n

F t F t f x t f x t
dx

t t t t

 


   

It follows from the Dominated Convergence Theorem 8.8 that 

 
( ) ( )

lim ( , ) .
b

n
t

an
n

F t F t
f x t dx

t t




   

Since ( )nt  is an arbitrary sequence converging to  ,nt with t t we infer 

that  "( )F t  exists and is given by  (12. ) . 

We now wish to establish a version of the familiar Leibniz formula 

concerting teh differentiation of an integral, were the limits as well as the 

integrand depend on the parameter. If we recall that an indefinite 

intergral is easily shown to be differentiable only at a point of continuity 

of the integrand, the hypotheses of the next theorem do not seem 

excessive. (While it is necessary that  f be defined on  *I T  for a 

sufficiently large interval  * ,I for the sake of simplicity we state this 

result for f  defined on   .)R T  

 Lelbniz’ Formula. Let  :  f R T R  satisfy: 

 "( )f  the function  ( , ) ( , )x t f x t  is continuous on R T . 

"( )f  The partial derivative ( , ) ( , )ix t f x t exists and is continuous on 

R T  

 "( )k  The functions  , : u T R are differentiable on T . 

Then the function  : G T R defined by 

 (12. )   
( )

( )
( ) ( , ) .

t

w t
G t f x t dx   

Exists and a differentiable on  T . Moreover, its derivative is given by  

(12. )   
( )

' '

( )
( ) ( , ) ( ( ), ) ( ) ( ( ), ) ( ).

t

w t
G t f x t dx f u t t u t f t t x t     

Proof. Let  " [ , ] intI A B bean erval in R suchthat  

 1 ( ) ( ) 1 .A u t x t B for t T      

It follows  from  
""( )i  that Hypotehesis  ( )H  and condition 11.13 ""( )i  

are satisfied. It follows from ""( )j  that 11.13  ""( )j  is satisfied and that 

tf  is bounded on  * ,I T  whence 11.13  ""( )k  is also satisfied. 

For convenience, let  " * * *: ,T T I I and define T     by  

 ( , , ) ( , ) .
v

u
t u v f x t dx    
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For  ,u v  fixed, Theorem 11.13 implies that the partial derivative  t  

exists on  *T  and equals 

 ( , , ) ( , ) .
v

t t
u

t u v f x t dx    

An extension of Theorem 11.12 to two parameters, the boundedness of 

the partial derivative  *

tf onT  and Theorem 4.11, imply that t is 

continuous in  *( , , )t u v inT .In addition, it follows from ""( )i  and 

Corollary 4.10 that the partial derivatives. 

 ( , , ) ( , ) ( , , ) ( , )u ut u v f u t and t u v f t      

Are also continuous in  *( , , ) .t u v onT  Consequently, we may apply the 

Chain Rule (see (B-2;p.361]) to conclude that G is differentiable on T 

and that  

 

'

'

'( ) ( , ( ), ( )).1 ( , ( ), ( )) ( )

( , ( ), ( )). ( ).

t u

v

G t T t u t t t u t v t u t

t u t v t v t

 


 

Hence formula  (12. )v  follows. Q.E.D 

We conclude this discussion with a result concerning the interchange of 

the order of integration. We will be content with a result that includes the 

hypothesis that the integrand in  (12. )  below has a primitive in  

( , [, .t T c d for each x I    

 11.15 Integration Theorem. Let   , :  g I T R  be such that    satisfies 

Hypothesis  ( ),H  and suppose that: 

(i) There exists  T   such that the function  *( , ) ( ).x x is in R I   

(j) The partial derivate  ( , ) ( , ) , .t x t g x t for all x I t T     

(k) There exists  *, ( )R I   such that 

 ( ) ( , ) ( ) , .x g x t x for all x I t T      

Then the function  ( , )x g x t  belongs to  *( )R I  for each  t T  so that 

 (12. )    ( ) : ( , )
b

a
G t g x t dx   

Is defined on T. Moreover,  *( )G R I and  

 (12. )    ( ) ( , ) .
d b d

c a c
G t dt g x t dt dx    

Proof. We will apply the Differentiation Theorem 11.13 with f  replaced 

by   .The hypotheses given above concerning   correspond exactly to 
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the hypotheses in 11.13 concerning  f . We conclude from 11.13(a) that 

the function  *( , ) ( ) [ , ]x x t is in R I for eacht T c d    and we let 

  (12. )   ( ) ( ) ( ).
d

c
G t dt T d c   

On the other hand, since  ( , ) ( , ),g x t t x t  the Fundamental Theorem 4.5 

implies that  ( , )t g x t belongs to  *( )R T  for each  x I  and that 

 ( , ) ( , ) ( , ).
d

c
g x t dt x d x c    

Since  ( , )x x t  is in  *( )R I  for each  ,t T  it follows from the 

preceding formula that   ( , )
d

c
x g x t dt  belongs to *( )R I  . Moreover. 

    ( , ) ( , ) ( , ) ( ) ( ).
b d b

a c a
g x t dt dx x d x c dx d c         

If we combine the last equation with (12. ) .we obtain  (12. )  Q.E.D 

 

Exercises 

11.A Write out the details of the proof that  2(12. )  is dominated by  

1
.

2
  

11.B Prove Theorem 11.2 fro an arbitrary base point  [ , ].c a b  

11.C Show that the function  2( ) : (2 / )sin( / ) (0.1]k x x x for x    and 

k(0):-0, arising in Example 11.3(a), does not belong to  ([0.1]).L  

[Hint: consider  2 2( ) : cos( / ) (0.1]H x x x for x   

11.D Show directly that the product  Fg  in Example 11.3(b) does not 

belong to  *([0.1]).R  

11.E Show directly that the function Fg fG  in Example 11.3 (b) does 

not belong to  *([0.1]).R  

11.F Let  2 4 2 4( ) : sin(1/ ) ( ) : cos(1/ ) (0.1]F x x x andG x x x for x    and  

(0) : 0 : (0).F G  Show that  Fand G  are differentiable at every point of 

[0,1] and that  ' 'FG F G  belongs to  * ' '([0,1]),R but that FG and F G  do 

not belong to  *([0,1]).R  

11.G (a) Show that  ( )cos 0 ([ , ]).
b

a
x nxdx as n when L a b     
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(b) Use the result in (a) to show that  (1/ ) ( )sin 0
b

a
n f x nx   as  n 

when  *([ , ]).f R a b  

11.H. If  f is continuous on  *: [ , ] ( )I a b and p R I   with  ( ) 0p x  a.e. 

on  ,I show that there exists  ( , )a b  such that ( ) .
b b

a a
fp f p   

11.I Let  , :[ , ]f p a b  be such that  'f  exists on  [ , ]a b  that  

' , ([ , ])f p p L a b  and that p>0a.e. Then there exists  ( , )a b   such that  

' ' ( ) .
b b

a a
f p f p   

11.J(a) If  *[ , ],f R a b if g  is increasing on [a,b] and if  

( ), ( ) ,A g a g b B   show that there exists  [ , ]a b  such that  

.
b b

a
fg A f B f



 
     

(b) Formulate and prove an analogous statement when g is decreasing on 

[a,b]. 

11.K Let  *([ , ]).f R a b  Establish the following versions of Bonnet‘s 

Theorem. 

(a) If  0g   is increasing on [a,b], then there exists  [ , ]a b   such that  

( ) .
b

a a
fg g a f



   

Check Your progress 

1. Prove : Let  : [ , ] : .I a b and f I R    Then the function  

*( )f R I if and only if there exists A R such that for every  ( , )c a b

the restriction of  [ , ]f to a c is integrable. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let   f I T R satisfy Hypothesis (H), and suppose that: 

There exists  T  such that  ( , ) lim ( , ) .tf x i f x t for all x I    

There exist functions  *, ( )R I  such that  ( ) ( , ) ( )x f x t w x    for all  

, .x I t T   Then the function F in  (12. ) exists on T and  

( ) lim ( ) :gF F t   that is  (12. )p    ( , ) lim ( , ) .
b b

a at
f x f x t dx
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

3. Prove: Let  :f I T R   satisfy Hypothesis (H) and suppose 

that: 

(i‘) The function  ( , )t f x t  is continuous on  T for each  : [ , ].x I a b   

(j‘) There exists functions *, ( )R I suchthat   

 ( ) ( , ) ( )x f x t x    for all  , .x I t T   

Then the function  : F T R  given by  (12. ) is continuous on  .T  

 Prove differentiation theorem. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

11.4 LET US SUM UP 
 

1. Let  : [ , ] : .I a b and f I R    Then the function  *( )f R I if and 

only if there exists A R such that for every  ( , )c a b the restriction of  

[ , ]f to a c is integrable. 

2. Let   f I T R satisfy Hypothesis (H), and suppose that: 

There exists  T  such that  ( , ) lim ( , ) .tf x i f x t for all x I    

There exist functions  *, ( )R I  such that  

 ( ) ( , ) ( )x f x t w x    for all  , .x I t T   Then the function F in  (12. )

exists on T and  ( ) lim ( ) :gF F t   that is  (12. )p   

( , ) lim ( , ) .
b b

a at
f x f x t dx





   

3. Let  :f I T R   satisfy Hypothesis (H) and suppose that: 

(i‘) The function  ( , )t f x t  is continuous on  T for each  : [ , ].x I a b   

(j‘) There exists functions *, ( )R I suchthat   

 ( ) ( , ) ( )x f x t x    for all  , .x I t T   

Then the function  : F T R  given by  (12. ) is continuous on  .T  
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11.5 KEY WORDS 
 

Improper integral 

Hakes theorem 

Integrals with parameter 

Differentiation theorem 

11.6 QUESTIONS FOR REVIEW 
 

     1. Explain about improper integrals 

     2. Prove Hakes theorem. 

     3. Prove Differentiation theorem. 

11.7 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus     

E.Taylo 

11.8 ANSWERS TO CHECK YOUR 

PROGRESS 
 

     1. See section 11.2 

     2. See section 11.2 

     3. See section 11.3 

     4. See section 11.3 
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UNIT-12 SUBSTITUTION THEOREMS 
 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.2 First substitution theorem-I 

12.3 First substitution theorem-II 

12.4 Integral-gauges 

12.5 Second substitution theorem –II 

12.6 Let us sum up 

12.7 Key words 

12.8 Questions for review 

12.9 Suggestive readings and references 

12.10 Answers to check your progress 

12.1 OBJECTIVE 
 

In this unit we will learn and understand about First substitution 

theorems, Second substitution theorems and integral-gauges. 

12.2 INTRODUCTION 
 

The substitution (or change of variables) theorems, which are 

consequences of the Chain Rule of calculus, are often useful in 

converting one integral into another. For example, the integral 

 
 

1

20

1
sin1

21

du
Arc

u
 


  

Can be converted (by the substitutions 
2 )u y and u x  into the 

integrals  

 
1 1

2 20 0

2 1

21

ydy dx
and

y x x 
  . 

Both of these substitutions are instances of the First Substitution 

Theorem, which can be summarized by the formula 

 
( )

( )
( ) ( ) ( ) ,

b b
t

a a
f u du f x x dx




    

Which is valid under certain hypotheses that will be stated. 
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The transformation in the direction  ( )u x  is usually straightforward. 

But every equation can be read from right to left, as well as from left to 

right. So the First Substitution Theorem is also useful when we see that 

an integral has the form on the right side of the above equation for 

appropriate functions f and .For instance, we note that the integral 

 
1

20

2

1

xdx

x  

has this form where  1 2( ) : (1 ) ( ) : .f u u and u x x     so the value of 

this integral can be seen to equal in 17. Usually, however, the appropriate 

substitution is not as obvious as in this case. 

The first Substitution Theorem 

We will now establish the validity of the above formula under some 

conditions that are useful in practice. Frequently, the differentiable 

function   is assumed to be a strictly montone mapping of the interval  

( ),I  but for many applications that hypothesis is not satisfied, and we 

need to permit   to be many to one. Of course, it is necessary that  f be 

defined on the interval  ( ),I  which contains – but need not equal – the 

interval with end points  ( ) ( )a and b  . 

We will first state a theorem in the case where  :f J R  has a-c 

primitive  , :FonJ and I   has a c-primitive  .on I We will also 

suppose that    is a countable-to-one mapping of  intf o J  in the sense 

that   1( )p 
 is a countable set in  I  for each  .p J  

It is stressed that for the equality of the two integrals, it is not necessary 

to know the c-primitive  F of f  explicitly, but merely to know that  F  

exists (as it does, for example, when  f  is regulated). 

12.2 FIRST SUBSTITUTION THEOREM: I 
 

I. Let  : [ , ] : [ , ]I a b and J c d   and suppose that: 

(i)  :f J R  has a c-primitive  .F on J  

(ii)  : I R  has  a c-primitive   on  ( ) .I and I J   

(iii)   is a countable-to-one mapping of  int .I o J  

Then   * *( ) ( ) ( ) : ,f R I and f R I moreover     
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 (13. )     
( )

( )
( ). ( ) | .

b b
b

a
a

f F f


 
      

Proof. By hypothesis (i), F  is continuous on J and there exists a 

countable set  fC J  such that   
*

.( ) ( ) fP u f u for all u J C    By 

hypothesis (i).   is continuous on  I  and there exists a countable set  

C I   such that  '( ) ( )x x   for all  .x I C  Therefore  F   is 

continuous on  .I  Hypothesis  ( )k  implies that  
1( )fC

 is a countable 

set in  
1, : ( )fI soC C C   is a countable set in  .I  The Chain Rule 

(see [B-S; p.162]) implies that 

 ' ' '( ) ( ) ( ( )). ( ) ( )( ). ( )F x F x x f x x       

For all  .x I C  Therefore F   is a c-primitive of  ( ) : ,f    so that  

  ( ) :f    belongs to  *( )R I  and 

 ( ). ( ) | ( ( )) ( ( )).
b

b

a
a

f F F b F a        

It follows from (i) that  *( ).f R J  But since  ( )f  is a compact interval 

in  .J  Corollary 3.8 implies that  f  is integrable on  ( )I  and also on 

the compact interval with endpoints  ( ), ( ).a b   

If  ( ) ( ),a b   then we apply the fundamental Theorem 4.7 to the 

interval  [ ( ) ( )]b a   implies that 

 
( )

( )

( )
( )

| ( ( )) ( ( )).
b

b

a
a

f F F b F a







     

Hence  (13. )  bolds in either case. Q.E.D 

Remarks. (a) If F is  a primitive of   f on J  (so that  0),JC  then 

hypothesis (k) is not needed in 12.1. 

(b) As mentioned at the beginning of this section , we sometimes use 

formula (13. ) in the opposite direction. That is, to integrate  ( ) ,f x dx






  

we sometimes find a substitution  ( )x v   that makes  ( )( )f v


  a 

relatively simple function of  ,v  and such that  '( ) : ( )v v   is also 

simple. In this case he formula (13. )  can be read as 
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'(13. )   ( ) ( ). ,

b

a
f x dx f






 

    

Where  a and b  are numbers such that  ( ) ( ).a and b     Of 

course, in using this approach we still have to verify that the hypotheses 

of Theorem 12.1 are satisfied. 

Examples.  (a) consider the integral  
3

2

1
2 1 .x x dx




  

We note that if we put  

2 '( ) : 0, ( ) 1 ( ) 2 1.3 .f u u for u and u x x then x x for x          

Thus the integrand has the form  '( )( ). ( ),f x x  where  f has the 

primitive   3/2( ) : .JF u u and C    Since  ( 1) 2 (3) 10.and   

Theorem 12.1 implies that 

 
3 10

2 2/ 2 10

2
1 2

2
2 1 |

3

u

ux x dx udu u 




     

 
2

(10 10 2 2).
3

   

Note that  ([ 1,3]) [0,10] [ ( 1), (3)]       and that    is not one-one on  

[ 1,3]; however, it is at most two-to-one on this interval. 

The integrand becomes unbounded as  0 ;x    hence there is some 

doubt about the existence of the integral. But, since the function is 

(measurable and) dominated in absolute value by  1/ ([0,0]),x L  the 

integral certainly exists. 

We let  ( ) [0,9]u x x on   so that    is an f-primitive of  

( ) 1/(2 ).x x   If we put  ( ) : cos ,f u u  which has a primitive  

( ) sin ,F u u  then the integrand has the form 

 
cos

( ( )). ( ) (0.9].
2

x
f x x for x

x
     

Since  ,jC   condition  ( )k  is satisfied. Theorem 12.1 now yields 

 
9 3

3

0
0 0

cos
2 cos 2sin | 2sin 3.

x
dx u du u

x
     

 '( )b  We consider the same integral as in (b). 
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This time we notice that since the integrand involves  ,x  it would be 

simplified if we used the substitution  2( ) : , 0x v v for if v     then  

2x x v   and so the integrand. 

 
cos cos

( ) ( )( )
x

f x becomes f
x






 

    

At least for  0.   Moreover  '( ) ( ) 2v sothat     

 
cos

( )( ). ( ) 2 2cos .f


    




    

We also note that   is a one-one mapping of (0.3] onto [0.9]. so we are 

led once more to the integral  
3

0
2 cos dx  

Now since  
*([0.9])f R



 is continuous on (0.9], it follows from 

Corollary 4.9 that it has an (unknown) f-primitive on (0.9]. Clearly    is 

a primitive of    on (0.3] and   is one-one. Thus the hypotheses of 

12.1 are satisfied. 

(c) Consider the integral  
1

2 1

0
(1 ) .x x dx  

The integrand is unbounded as  1 ,x    so we will first consider the 

integral over  : (0. ], (0.1).I b withb    If we let  2( ) : 1 ,u x x    then  

  is a primitive of  .( ) : 2 bx x on I   Further,   is a strictly decreasing 

map of  bI  onto  2: [1 ,1]bJ b   Also, the function  

1( ) : (2 ) bf u u foru J   has a primitive  
1

( ) : .
2

bF u inu on J Hence  

1
( ) : .

2
bF u inu on J Hence

 

 

2

02 20

2 1
| 1 (1 ).

1 2(1 ) 2

b b
b

a

xdx x
F n b

x x



      

    

Now that the limit of  21
1 (1 )

2
n b  does not exist in  1 .asb  

Therefore, by Hake‘s theorem 12.8, the Hake‘s Theorem 12.8, the 

integral  
1

2 1

0
(1 )x x  dx does not exist. 

(d) Consider the integral  
1

2

0
1 .x dx  
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We will make use of  '(13. ). Our knowledge of the trigonometric 

functions suggests that we use the substitution  

2( ) : sin . ( ) 1 ,x v v If f x x then


      

 
2 2( )( ) 1 sin cos cos .f v v v v



      

Since  f


 is continuous on [0,1], it has  a primitive on this interval. We 

note that    maps the interval  
1

(0 ]
2
 in a one-one fashion onto (0.1] 

and is the primitive of  
1

( ) cos 0 (0 ]
2

v v on    Therefore equation  

'(13. )  gives 

 
1 1

1
2 22 2

0 0 0
1 cos cosx dx v dv d

 

       

 
1

2

0

1 1 1 1 1 1
[sin cos ] [sin( )cos( ) ( ] .

2 2 2 2 2 2



            

The Second Substitution Theorem 

The way that substitutions are often approached in calculus courses is to 

observe that setting  ( )u x will make it possible to write part of the 

integrand in the form  f  and then hope that we can come up with the 

factor  '  somewhere. If we can ‗build up‘ the factor   by adjusting 

the remaining part of the integrand by constants, then we can use 

Theorem 12.1 otherwise, we usually abandon this substitution and try 

another one. 

However, there is another theorem that enables us to convert at integral 

involving f  into an integral involving f and the derivative of function  

1:    that is inverse to   . Since we require   to have an inverse 

function, we now assume that   is one –one. 

First we recall that if  : I   is continuous on  [ , ]I a b  and has a 

nonzero detivative on [a,b], then by the Darboux Intermediate Value 

Theorem (see [B.S;p.174]) applied to compact subintervals of (a,b), we 

infer that the derivative  '  has constant sign on (a,b). Hence, by the 

Mean Value Theorem and the continuity of   ,the function   is strictly 

monotone on [a,b] and we therefore have either 
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 '

'

1 1
( ) ( )

( ( )) ( ( ))
u u

b u
 

   
    

If  '  does not exist at one or both of the endpoints  ( ), ( ),a b  we  

define it to equal 0 there. 

We  now state a version of Second Substitution Theorem. Although it is 

not the most general theorem possible, it applies in very many 

circumstances. We have taken pains to allow the possibility that  '   

vanishes (or does not exist) at the end points a,b, since this case often 

arises  in applications. 

12.3 Second Substitution Theorem, I. Let  : [ , ] : [ , ]I a b andJ c d   and 

suppose that : 

 '( ) : .f f J R  

 '( ) : f I R  is continuous,  '( )I J and  exists and is  0 on (a,b). 

 '( )k f  is integrable on  .I and f   is integrable on  ( ),I when   is 

the function inverse to    " ( . ) .and on a b    Moreover 

 (13. )   
( )

( )
| .

b b
b

a
a a

f W f



     

Remarks. (a) A 0-primitive W exists if f is regulated (and so, if it is 

either continuous or moonstone) on  J  

(b) Sometimes it is not easy to find a c-primitive W  of  ,f     but one 

can find a 0-ptimitive of f . 

(c) When these c-primitives are not known explicitly, one still has the 

equality of the integrals 

 Proof of 12.3. We note that hyperthesis  '( )f  implies that there exists a 

continuous strictly monotone function   inverse to   and that  

'( ) ( )and that u u    exists for all  (( , )) .u a b J   

It  W  is & 0-primitive of  f  on  ,I there exists a countable set  

1C I  such that  
'

.( ) ( ( )), jW x f x for x I C    WE let  

2 1( ) ( ( ), ( ))C C a b   so that  2C  is a countable set in the compact 

interval  ( ).I  By the Chain Rule, if  

 2 1,( ) , ( ), ( ) ( )u I C thenu a b and u C        so that 

 ' ' ' '( ) ( ) ( ( )). ( ) ( ( )). ( ). ( ).W u W u u f u u u         
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Thus  W  is a c-primitive of  *. ( ), . ( ( )).f on I sothat f R I   

Moreover, 

 
( )

( )

( )
( )

| ( ) | . .
b

b
b b

a a
a a

f W W f







       

Therefore equation (13. )  is established. Q.E.D 12.4 Examples. 

Consider the integral  
2

1

0
(1 ) .x dx  

 WE use the Second Substitution theorem 12.3 with  1( ) : (1 )f u u    and  

( ) .u x x   Here  '( ) 1/(2 ) 0 (0.2]x x for x     and it is clear that  

2( ) ( ) 2 .u u sothat u u   Note that  f is continuous (and also 

monotone) on (0.2]) (0, 2],   so we have 

 
2 2

0 0
( )( )

1

dx
f x dx

x



   

 
2 2

0 0

1
( ) ( ) .2 .

1
f u u du udu

u
  

   

If we let  (1 ) 1u u    on the right, we readily show that the value of 

this integral equals  2[ 2 (1 2)]In  . 

[Of course, in calcubas we were taught to set  u x  so that 2x x  and 

hence   2 ,dx udu  whence 

 
2

11

dx udu

ux



 

 

 Thus the somewhat mysterious juggling with differentials gives the 

correct result even though it gives no indication that the point  0x   is a 

difficult point for the function  .]  

(b) Consider the integral  
1

1

0
(1 ) .x dx  

The integrand is unbounded as  1 ,x    so we will consider the integral 

over [0,b] with  (0.1).b  As in (a), the substitution  ( ) :u x x   

gives 

 0
0 0

2
2[ (1 )] |

11

b b
bdx udu

u In u
ux

   


   

 2[ (1 )].b In b    
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But this last expression approaches  1 ,asb   so Hake‘s Theorem 

12.8 implies that the integral  
1 1

0 (1 )f x dx  does not exist. 

An Extension of Theorem 12.1 

We now give a  version of the First Substitution Theorem 12.1 that does 

not assume the existence of the c-primitive of the function  .f  Instead, it 

will be assumed that the substitution function  : I   is continuous, 

strictly monotone, and differentiable except possibly on a countable set  

.R I  

12.3 FIRST SUBSTITUTION THEOREM II.  
 

Let  : [ , ] : [ , ]I a b andJ c d  and let  : . : . f J R Let I R  be a 

continuous strictly monotone function with  ( )I J   and suppose that 

there exists a countable  set R I  such that  '( ) : ( )x x   exists for all  

x I C   and let  ( ) : 0 .x for x C    

 (a) Then  f  belongs to  *( ( ))R I  if and only if  ( ).f   belongs to  

*( ).R I  

In either case , we have 

 (13. )    
( )

( )
( ). .

b b

a a
f f




    

Remark. Formula (13. )  will be proved when   is a strictly increasing 

function, but it also remains true when   is strictly decreasing, as the 

reader may show. However, in that case, if    : [ , ].I a b  then  

( ) [ ( ), ( )],I b a   so the integral on the left side is from a larger to a 

smaller value. Bearing in mind that the derivative  ' 0 .is on I    we 

can write both the increasing and the decreasing case in the form 

 (13. ')   
( )

( ). ,
I I

f f


    

Which is consistent with the situation in higher dimensions. 

The proof of Theorem 12.1 was based on the Chain Rule and was quite 

straightforward. The proof of Theorem 12.5 is more involved because we 

need to take a careful look at the Riemann sums of two functions on 

different intervals. This theorem was given by McLeod [McL;pp.64-64] 



Notes 

76 

without a detailed proof, and proved by marie Bielawski by carefully 

adjusting the gauges for the Riemann sums approximating the two 

integrals in   (13. ) . We will modify her argument by the use of 

―interval-gauges‖, which provides an alternative approach to the 

generalized Riemann integral and so has some independent interest. 

12.4 INTERVAL-GAUGES 
 

In Exercises1.T we defined an interval-gauge on  : [ , ]I a b  to be a 

mapping  ( )t t  of points  t I  into bounded closed intervals  

( ) [ , ( ), ( )]t a t b t   such that  ( ( 0 ( )) .t a t b t for all t I    We say that an 

interval-gauge  on I is symmetric if  t  is the midpoint of  ( )t  for all  

.t I  It is clear that if    is a (point) gauge on  ,I  then we can define a 

symmetric interval-gauge 

 ( ) : [ ( ), ( )]t t t t t t      

 Corresponding to   .Conversely, if    is an interval-gauge on  ,I  then 

we can define a (point) gauge  on I  by 

 (13. )    ( ) : min ( ), ( ) .t t a t b t t for t I      

As in Exercise 1.U, if    is an interval-gauge on ,I we say that a tagged 

partition   
.

, 1
: ( ) ( ) 1,..., .

n

i i i ii
P I t of I is fineif I t for all i n


     If   is 

an interval-gauge and if we define    as in  (13. ) , then any partition  

.

P of I  that is  -fine is certainly also  .fine   Thus, by cousin‘s 

Theorem 1.4, for every interval-gauge  there exist tagged partitions that 

are .fine   

We say that a function  : g I R  is integrable on  I  to a number  

D  if for every  0  there exists an interval-guage   on I  such 

that if  
.

P  is any  -fine partition of I , then  
.

( ( ; ) | .S g P D   
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From the preceding remarks, we see that a function  g  is integrable in 

this sense if and only if it is integrable in the sense of Definition 1.7, and 

the values of the integrals are equal. 

The reason why interval-gauges are useful is that they map nicely with 

respect to strictly monotone functions. In more detail. Let  : I R  be a 

continuous strictly increasing function. We extend    to all of  R by 

defining  

 

( ) ,
( ) :

( ) .

a t a for t a
x

b t b for t b






  
 

  
 

This extended function    is continuous and strictly increasing on  R 

there-fore, it is an order-preserving map that sends compact intervals to 

compact intervals, and sends the endpoints (and the interior points) of 

such intervals to the endpoints (and the interior points) of the images of 

these intervals. 

Now, if    is an interval-gauge on  I , then we define    on  ( )I  by 

 ( ( )) : ( ( )) .t t for t I      

The properties of    mentioned above show that    is an interval-gauge 

on  ( ).I . Moreover, if  ( )s t  and  ( ) [ ( ), ( ))].t a t b t   then 

   ( ) [ ( ), ( ( ))].is I b t    

Similarly, if   
.

1
: ( , )

n

i i i
p I t


  is a tagged partition of I  ,then we define 

   
.

1
: ( ( )), ( ( )) .

n

i i
p I b t 


  

The properties of   imply that 
.

P  is a tagged partition of  ( ).I  

Moreover , it is clear that if  

.

P  is  fine, then 
.

P  is   -fine. 

On the other land, if  : R R is the function inverse to , then   is 

also continuous and strictly increasing. Thus it maps an interval-gauge 

on ( ( ))I I   given by 
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 '( ) : ( ( ( )) .t I t for t I     

Similarly, if   
.

1
: ( ( ), ( ))

m

k k k
Q J s 


  is a tagged partition of  ( ),I  then  

      
1

: ,
m

k k
k

Q J s


    

Is a tagged partition of  I  and if  

.

Q  is a fine   partition of  ( ),I  then 

we see that 

.

Q  is a    fine   partition of  I  Further, if 
.

Q   is given and

. .

: ,P Q then 
. .

.Q P  

Remark. An observant reader (with good eyesight) will have noticed 

that we are using acute accents to indicate the transformed interval-

gauges and partitions from  I  into  ( ),I and grave accents to indicate 

the transformed interval-gauges and partitions from ( ) .I to I  

 The above discussion was for  a strictly increasing function   If    is 

continuous and strictly decreasing, the we extend   to all of R by 

defining is to have slop-1 outside of   R and obtain a continuous and 

strictly decreasing function on  R. This extended function is an order-

reversing  map of  R Consequently, the endpoints of the intervals need to 

be reversed, but the preceding considerations are readily modified. 

Proof of Theorem 12.5 

We now show that the stated properties of   guarantee that a suitably 

fine partition of   I  gives rise to Riemann sums of   f  and  ( ).f     

that are nearly equal. We will treate only the increasing case. The reader 

will note that the proof of this lemma is similar to that of the 

Fundamental Theorem 4.7. 

12.6 Lemma. Let  : f J R  and  , :1   R  be as in Theorem 12.5. 

Given  0,  there exists an interval-gauge    on I such that if   

 
.

1
: ( , )

n

i i i
P I t


   is any  fine   partition of  I  and if   

 
.

1
: ( ( ), ( ))

n

i i i
P I t 


  then 
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 (13. )                                            
. .

: 0 . ; ) 1S f P S f P b a
 

       
   

Proof. Let   kC c  be an enumeration of the set where the derivative  

'   does not exist and let  0  be given If  ,t I C  then   is 

differentiable at  t , so we may apply the Straddle Lemma 44 to find a 

compact interval  ( )t  with midpoint  t  such that if

, ( ) ,u t and u t     then 

   '

( )
( ) ( ) ( )

| ( ( )) | 1

u
u t u

f t

 
     

   

Whence it  follows that 

 
   13. ( | ( ) ( ))] ( ( )). ( )( ) ( ).f t u f t t u u            

Since   is continuous at   ,kc I there exists a compact interval  ( )kc  

with midpoint  kc  such that if  , ( ) ,k ku c and u c    then   

 | ( ) ( ) |
2 (| ( ( )) | 1).k

k

u
f c


   

   

and since  ( ) : 0,kc   we have 

  
   13. ) | ( ) ( )] ( ( )). ( )( )

2
k k k k

f c r u f c c u


        

. 

Now let  
1,| ],i i tI x x so that   1( ) [ ( ), ( )].i i iI x x     It follows that 

.

1

1

; ( ( ))[ ( ) ( )].
n

i i i

i

S f P f t x x 



 
     

 
   and 

   
.

1

1

. ; ) ( ( )). ( )( ).
n

i i i i

i

S f P f t t x x 



       

 Therefore, if we use  (13. )  and  (13. ) ,then we conclude that  
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. .

1

1 1

( ; ) ( ) . ; ) | ( ) / 2
n

k

i i

i k

S f P S f P x x




 

         

 ( ) ,b a    

Which is the stated inequality. Q.E.D 

We are now prepared to give the proof of Theorem 12.5. We will 

consider only the case of increasing   . 

Proof of Theorem 12.5. (a) Suppose that  ( ).f    belongs to  *( )R I  

with integral A. Then, given  0  there exists an interval-gauge    on  

I  such that if  
.

P is a   -fine partition o f ,I  then  

.

| (( ). ; ) | .S f P A     If    is the interval-gauge in Lemma 12.6, we 

let  ,    so that if 
.

P  is a  -fine partition of I ,then it is both  -

fine and  -fine. Now let  be the interval-gauge on ( )I that 

corresponds to  .If  
.

Q is a  -fine partition of ( )I ,then
.

P ,so that  

. .

( ; ) ( ; ).S f Q S f P Therefore we have 

 
. . . .

( ; ) | ( ; ) ( ). ; ) | | (( ). ; ) |S f Q A S f P S f P S f P A          

 ( 2).b a    

Since  0  in arbitrary, we deduce that  *( ( ))f is in R I  with integral A. 

Now suppose that f belongs to *( ( ))R I with intergral B. Then, given 

0 , there exists an interval-gaugeTon ( )I such that if  
.

Q is any T -

fine partition of  ( ),I then  
.

| ( ; ) | .S f Q B  Now let T be the interval 

gauge is an interval-gauge on I .Now, if 
.

P is an   

 -fine partition of I ,then 
.

P is  -fine and 

.

P is   -fine, so that  

. . .

| (( ). ; ) | | (( ). ; ) | | ( ; ) |S f P B S f P S f P B         
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 ( 2).b a    

Since  0  is arbitrary, we conclude that ( ).f    belongs to *( )R I  

with integral equal to B. 

(b) If   is increasing, then  0 ( ). ) ( ). .and so f f         We now 

apply part (a) to these functions and to  ,f   using Theorem 7.11. Q.E.D.  

The Second Substitution Theorem 

We now give another version of the Second Substitution Theorem. It is 

possible to give a proof that is quite parallel to the proof of Theorem 

12.5, but we prefer to deduce it from that result. 

12.5 SECOND SUBSTITUTION 

THEOREM, II.  
 

Let  : [ , ] : [ , ] : .  I a b and J c d and let f I R  be a continuous strictly 

monotone function with  ( )I J   and suppose that there exists a 

countable act R J  such that  ( )I J   and suppose that there exists a 

countable set  C J such that   '( ) : ( ) 0x x     for all  .x I C   Let  

  be the continuous strictly monotone function inverse to    so that    

'( ) : ( ) 1/ ( ( )) ( ),y y y for y I C         

And let  ( ) : 0 ( ).y for y C    

(a) Then  .f   belongs to  *( ( ))R I  if and only if  f   belongs to  

*( ).R I  

(b) Also  .f  belongs to  ( ( ))L I  if and only if f  belongs to  ( ).L I  

In either case, we have 

 (13. )t        
( )

( )
. .

b b

a a
f f




     

Proof. (a) We note that  ( ( )). ( ) 1 .x x for all x I C       Therefore, if 

we let  1( ) : ( ). ( ) ( ),f y f y y for y I    it follows that 

1( )( ). ( ) ( ( )). ( ( )). ( ) ( )( )f x x f x x x f x          

For  .x I C   Theorem 12.5 implies that  1 .f f   belongs to  *( ( ))R I  

if and only if  1( ).f f    belongs to  *( )R I .In that case 
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( ) ( )

1 1
( ) ( )

. ( ). ,
b b b b

a a a a
f f f f

 

 
           

But this yields equation   (13. )t  

(c) If   is increasing, then  ( . ) . ( ) .f f and f f          

Now apply part (a)       Q.E.D 

Another Substitution Theorem 

We now obtain another version of the First Substitution Theorem in 

which we do not assume that    is monotone, instead, we will assume 

that  ' ( )x  exists and is  0  except on a finite subset of  .I  

 12.8 First Substitution Theorem, III. Let  

: [ , ] : [ , ] : .  I a b and J c d and let f J R  Let  : I R  be continuous 

with  : ( )I J  and suppose that there exists a finite set  x I E   and 

we set  ( ) : 0 .x for x E    

(a) Then  f  belongs to  *( ( ))R I  if and only if  ( ).f    belongs to  *( ).R I  

(b) Also f  belongs to  ( ( ))L I  if and only if  ( ).f   belongs to  ( ).L I  

In either case we have 

 (13. )k                             
( )

( ) 0
( ). .

b b

a
f f




     

Proof. (a) 0rder the points in    0 1, : ... :mE a b by a b     and let  

  1: , 1,..., .k k kI e e for k m  Then    is continuous on each interval  

'

1( ) 0 ( , ).k k kI and x for x e e   It follows from the Darboux intermediate 

value Theorem [B.S;p,174) that  ' ( )x  does not change sign  on  .kI  The 

Mean Value Theorem then implies that     is strictly monotone on .kI

Theorem 12.5 implies that  f is integrable on  ( )kI  if and only if  

( ).f    is integrable on .kI IT therefore follows from Theorem 3.7 and 

induction that f  is integrable on  ( )I  if and only  if ( ).f    is 

integrable on  ,I  in which case the the additivity of the integral over 

subintervals implies that (13. )k  holds. 

(b) The case of absolute integrability is handled similarly Q.E.D 

Remark. We will not state a corresponding version of the Second 

Substitution Theorem, since it requires the existence of an inverse 

function in each of the finite subintervals. However it is  clear that in 

certain instances, it might be useful to break the interval I into a finite 
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number of parts and calculate the appropriate inverse functions on each 

part. 

More Examples 

12.9 Examples. (a) We saw in Example 6.12(a) that the Beta function  

(13. )   
1

1 1

0
( , ) : (1 )p qB p q x x dx    

Exists when  0, 0.p q   If we introduce the substitution  

2( ) : (sin ) [0, / 2].x for        an elementary calculation gives 

(13. )    
/ 2

2 1 2 1

0
( , ) 2 (sin ) (cos )q qB p q d


      

(b) Consider the integral  
sin( / )

0 .
x

dx where
x






     

Here we let ( ) : 1/ 0,x u u for u    nothing that   is strictly decreasing 

and that    noting that    ' 2( ) : ( ) 1/ .u u u      Thus   is an order-

reversing map of the interval  

*(1/ ,1/ ) [ , ]. ( ) : [sin( / )] / ,onto If welet f x x x       then we have  

( ) [sin( )] ( ). ( ) [sin( )] / .f u u u and f u u u u         

If we apply formula  (13. )  and simplify, we obtain 

 

 (13. )v   
1/

1/

sin( / ) sin( )
,

x ru
dx du

x u

 

 


   

Which will be used in Example 12.10(b). 

Infinite Integrals 

In Section 16 we will discuss the integral of a function over infinite 

intervals, such as the interval  [ , ],   and we will obtain a version of 

Hake‘s Theorem asserting that the  Riemann integral  f


  exists if and 

only if  
c

a
f   exists for all  c a  and the limit  lim

c

c
a

f   exists. 

We will now show that the substitution theorems we have established in 

this section  sometimes give useful information concerning limits of this 

type. Hence, the results often provide an effective method of establishing 

the existence of, and of evaluating, these infinite integrals. 

12.10 Examples. (a) If we take   ( ) : /(1 ) [0, ]x u u u for u b      in 

equation  (13. ) , we obtain (after an easy calculation): 
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1

/(1 )
1 1

0 0
(1 ) 2 .

(1 )

p
b b b

p q

p q

u du
x x dx

u




 


 

   

Since we have seen in Example 6.12 (a) that if  0, 0,p q   then the 

function  1 1(1 )p qx x x   belongs to  *([0,1]),R  we conclude from 

Hake‘s theorem 12.8 and the fact that  /(1 ) 1b b as b that    

 
1

0
( , ) 2 lim .

(1 )

p
b

p qb

u du
B p q

u







 

By the version of Hake‘s Theorem to be proved in Section 16, we will 

have  

   
(13. )  

1

0
( , ) 2

(1 )

p

p q

u du
B p q

u







   

(b) If we take  1   in formula  (13. ),v  we infer that 

 
1

0 1

sin( / sin( )
lim .

c

c

x u
dx du

x u

 
   

Since  (1/ )sin ( )u u u  is bounded on [0,1]and continuous (if we 

define it to equal  0),at x   there is no doubt about the existence of the 

integral  
1

0
(1/ )sin( ) .u u du  Moreover, if we use  (13. )v  with  1 ,     

we obtain  

 
1/

1 1

sin( / ) sin( )
.

x u
dx du

x u

  
    

Whence it follows that 

 
1

1 0

sin( / ) sin( )
lim .

x u
dx du

x u





 
   

Combining these observations, we obtain the nonobvious formula 

  (13. )     
0 0

sin( / ) sin( )
.

x u
dx du

x u

  
   

Note that the existence of the integrals over  [1, ]  on each side of  (13. )  

follows from the existence of the integrals over (0,1] on the other side. 

Exercises 
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Some of the following integrals are divergent, and others are convergent. 

When possible, evaluate the convergent integrals exactly, checking your 

result with the given approximate values. State which theorem(s) you use 

and identify the functions; you may also use Integration by Parts. 

Assume that  0 .a b   

12.A  
3

2

0
( ) 4 12.957,a x x dx     

1
2

1
( ) 4 .b x x dx


  

12.B   
3

20
( ) 1.151,

1

xdx
a

x


     
2

( )
1

b

a

x dx
b

x  

12.C  
4

0
( ) 1.227,

2

dx
a

x



      ( )

2

b

a

dx
b

x
  

12.D  
3

1
( ) 0.664,

1

dx
a

x x



     

3

0
( )

1

dx
b

x x 
  

12.E  
5

1
( ) 2 3 37.498,a x x dx     ( ) 2 3 .

b

a
b x x dx  

12.F   
4

1

1
( ) 3.157,

x
a dx

x


    

4

0

1
( ) .

x
b dx

x


  

12.G  
2

1

1
( ) 0.429,

x
a dx

x


    

2

0

1
( ) .

x
b dx

x


  

12.H  
1

20
( ) 1.571.

dx
b

x x



    ( ) .

1

b

a

x
b dx

x
  

12.I  
4

0
( ) 0.785,

( 4)

dx
a

x x



    ( ) .

( 4)

b

a

dx
b

x x 
  

12.J  
cos

( ) (2 sin ) |
( 4)

b
b

a
a

x dx
a In x

x x
 


   [Use Theorem 12.8] 

12.K  
2

cos
( ) tan (sin ) | .

2 cos

b
b

a
a

x dx
a Arc x

x


  

12.L  
8

3
( ) 0.405,

1

dx
a

x x



   

1

20
( ) 1.571.

dx
b

x x
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12.N  
1

30
( ) 1.047,

1

x
a dx

x


    
1

20
( ) 0.524.

1

xdx
b

x


   

Check Your progress 

1. Prove: Let  : [ , ] : [ , ]I a b and J c d   and suppose that: 

(i)  :f J R  has a c-primitive  .F on J  

(ii)  : I R  has  a c-primitive   on  ( ) .I and I J   

(iii)   is a countable-to-one mapping of  int .I o J  

Then   * *( ) ( ) ( ) : ,f R I and f R I moreover   

( )

( )
( ). ( ) | .

b b
b

a
a

f F f


 
    

 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let  : f J R  and  , :1   R  be as in Theorem 13.5. Given  

0,  there exists an interval-gauge    on I such that if   
.

1
: ( , )

n

i i i
P I t


   

is any  fine   partition of  I  and if    
.

1
: ( ( ), ( ))

n

i i i
P I t 


  then    

   
. .

: 0 . ; ) 1S f P S f P b a
 

       
   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3.Prove second substitution theorem. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

12.6 LET US SUM UP 
 

1. Let  : [ , ] : [ , ]I a b and J c d   and suppose that: 

 :f J R  has a c-primitive  .F on J  
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 : I R  has  a c-primitive   on  ( ) .I and I J   

  is a countable-to-one mapping of  int .I o J  

Then   * *( ) ( ) ( ) : ,f R I and f R I moreover     

   
( )

( )
( ). ( ) | .

b b
b

a
a

f F f


 
      

2. Let  : f J R  and  , :1   R  be as in Theorem 13.5. Given  

0,  there exists an interval-gauge    on I such that if   

 
.

1
: ( , )

n

i i i
P I t


   is any  fine   partition of  I  and if   

 
.

1
: ( ( ), ( ))

n

i i i
P I t 


  then 

                                          
. .

: 0 . ; ) 1S f P S f P b a
 

       
 

 

12.7 KEY WORDS 
 

Interval-gauge 

Substitution theorem 

Riemann integral 

12.8 QUESTIONS FOR REVIEW 
 

1. Explain about First substation theorem-1 

2. Explain about First substation theorem-II 

3. Explain about First substation theorem-III 

4. Explain about second substation theorem-1 

12.9 SUGGESTIVE READINGS AND 

REFERENCES 

 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 



Notes 

88 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

12.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 12.2 

2. See section 12.4 

3. See section 12.5 
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UNIT-13 ABSOLUTE CONTINUITY 

 

STRUCTURE 

13.0 Objective 

13.1 Introduction 

13.2 Properties Of Continuity 

13.3 Lebesgues Differentiation 

13.4 Indefinite integrals of functions 

13.5 Let us sum up 

13.6 Key words 

13.7 Questions for review 

13.8 Suggestive readings and references 

13.9 Answers to check your progress 

 

13.0 OBJECTIVE: 

 

In this unit we will learn and understand about Absolute continuity, 

Properties of continuity, Lebesgues Differentiation and indefinite 

integrals of functions. 

13.1 INTRODUCTION 

 

A continuous function fails to be absolutely continuous if it fails to 

be uniformly continuous, which can happen if the domain of the function 

is not compact – examples are tan(x) over [0, π/2), x
2
 over the entire real 

line, and sin(1/x) over (0, 1]. But a continuous function f can fail to be 

absolutely continuous even on a compact interval. It may not be 

"differentiable almost everywhere" (like the Weierstrass function, which 

is not differentiable anywhere). Or it may be differentiable almost 

everywhere and its derivative f ′ may be Lebesgue integrable, but the 
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integral of f ′ differs from the increment of f (how much f changes over 

an interval). This happens for example with the Cantor function. 

A finite measure μ on Borel subsets of the real line is absolutely 

continuous with respect to Lebesgue measure if and only if the point 

function ( ) ( ( , ] )F x x   

is an absolutely continuous real function. More generally, a function is 

locally (meaning on every bounded interval) absolutely continuous if and 

only if its distributional derivative is a measure that is absolutely 

continuous with respect to the Lebesgue measure. 

If absolute continuity holds then the Radon–Nikodym derivative of μ is 

equal almost everywhere to the derivative of F.  

More generally, the measure μ is assumed to be locally finite (rather than 

finite) and F(x) is defined as μ((0,x]) for x > 0, 0 for x = 0, and −μ((x,0]) 

for x < 0. In this case μ is the Lebesgue–Stieltjes measure generated by F. 

The relation between the two notions of absolute continuity still holds.  

13.2 PROPERTIES OF CONTINUITY 

 The sum and difference of two absolutely continuous functions are 

also absolutely continuous. If the two functions are defined on a bounded 

closed interval, then their product is also absolutely continuous. 

 If an absolutely continuous function is defined on a bounded closed 

interval and is nowhere zero then its reciprocal is absolutely continuous.  

 Every absolutely continuous function is uniformly continuous and, 

therefore, continuous. Every Lipschitz-continuous function is absolutely 

continuous.  

 If f: [a,b] → R is absolutely continuous, then it is of bounded 

variation on [a,b].  

 If f: [a,b] → R is absolutely continuous, then it can be written as the 

difference of two monotonic nondecreasing absolutely continuous 

functions on [a,b]. 

https://en.wikipedia.org/wiki/Borel_set
https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Distributional_derivative
https://en.wikipedia.org/wiki/Lebesgue%E2%80%93Stieltjes_integration
https://en.wikipedia.org/wiki/Uniform_continuity
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Bounded_variation
https://en.wikipedia.org/wiki/Bounded_variation
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 If f: [a,b] → R is absolutely continuous, then it has 

the Luzin N property (that is, for any  such that , it holds 

that , where  stands for the Lebesgue measure on R). 

 f: I → R is absolutely continuous if and only if it is continuous, is 

of bounded variation and has the Luzin N property. 

 Definition 7.3 we defined what it means for a function   
:[ , ]F a b R  to 

have bounded variation on  : [ , ].I a b  We denoted the variation of  

( ; )F byVar F I  and the collection of all functions having bounded 

variation on  ( ).I byBV I  It was seen in Exercise 7.E that linear 

combinations and point wise products of functions in ( ).BV I  also belong 

to  ( ).BV I  Also, it was noted in Exercise 7.J that a function is in ( ).BV I  

if and only if it is the difference of two increasing functions. For that 

reason, in establishing results about functions in ( ),BV I  it is  frequently 

useful to consider the case of increasing functions. 

The following basic theorem was proved by Henri Lebesgue in 1904. A 

detailed  proof of it is given in Appendix E. 

13.3 LEBESGUES’S DIFFERENTIATION 

THEOREM. 
 

If 
 ( ),F BV I  then there exists a null set  Z I  such that the derivative  

' ( )F x  exists for all  .x I Z 
 

In other words, a function  ( )F in BV I is differentiable a.e. on  .I  

However, the converse assertion is not true; indeed, it was seen in 

Example  7.6(c) that the function  

2( ) : cos( / ) (0.1] (0) : 0G x x x and G    is differentiable at every point of  

, ( ).I but G BV I  

The question arises as to whether the derivative  'F  of a function  

( )F BV I  is integrable . The answer is: ―Yes-but...‖In fact, the 

derivative 'F  always belongs to  ( );L I however, the integral of 'F  over  

[ , ]a x  may not yield  0 .xF  

https://en.wikipedia.org/wiki/Luzin_N_property
https://en.wikipedia.org/wiki/Lebesgue_measure
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Theorem. If 
 ( ), ' ( ).F BV I then F L I   In addition. If  F is increasing 

on  : [ , ],I a b then ' ( ) ( ) .
x

a
F F x F a for x I    

Proof. It is enough to treat the case where  F is increasing on  .I  We 

extend F to  [ , 1]a b  by setting  ( ) : ( ) ( , 1].F x F b for x b b    If  ,n N  

we define   ( ) : ( 1/ ) ( ) .nf x n F x n F x for x I     

Since F  is increasing, it is measurable and nf is also measurable and 
 

( ) 0 .nf x for x I   Also lebesgue‘s Theorem 14.1 implies that 
 

lim ( ( )n nf x  exists a.e. and equals  '( ).F x Moreover, we have that 

 (14. )       ( 1/ ) ( ) . .
b b b

n
a a a

f n F t n dt F t dt   
      

Theorem 3.21(a) or the First Substitution Theorem 13.1 imply that 

 
1/ 1/

1/
( 1) / ) ( ) ( ) .

b b n b n

a a n b
F t n dt F t dt F t dt

 


      

Consequently, equation  (14. )  becomes 
1/ 1/

.
b b n a n

n
a b a

f n F F
   

      

But,     ( ) ( ) , 1/ ( ) ( ) , 1/ ,F x F b for x b b n and F a F x for x a a n     

whence   ( ).(1/ ) ( ).(1/ ) ( ) ( ).
b

n
a

f n F b n F a n F b F a     

Since  0,nf   Faton‘s Lemma 8.7 implies that  ' ( )F L I and  

 0 ' ( ) ( ),
b

a
F F b F a    

Which is  (14. )  with  .x b  If we replace the interval [a,b] by the 

interval  [ , ] [ , ],a x for x a b  we obtain (14. )  Q.E.D. 

 Examples. (a) The Cantor-Lebesgue singular function  :[0,1]  R  

Theorem 4.17 is increasing and so belongs to BV([0.1]). Moreover. 

 '( ) 0x  when  [0,1] ,x   where   is the Cantor set (see 4.15). Here 

we have  
0

0 ' ( ) (0) (0.1].
x

x when x      Note also that    is 

continuous on  [0.1].  

(b) There exists a strictly increasing continuous function  

[0.1] '( ) 0 . .f on with f x a e  

We will now define the important class of functions that are ―absolutely 

continuous‖. According to Hawkins [Hw-1;p.142ff.], Axel Harnack 

(1851-1888) called attention to this notion as early as the 1880s, and this 
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property was also considered by other mathematicians near the end of the 

eighteenth century. However, the name was introduced in 1905 by 

Giuseppe Vitali (1875-1932).The reader will recall that we used the 

phrase ―absolute continuity property‖ in connection with 10.10(a). The 

next definition is essentially this property for sets that are the union of a 

sub partition o f I  (that is, a finite collection of nonoverlapping closed 

intervals in I ). 

 

 Definition . Let 
 : [ , ] ; . I a b and let F I R  We say that  F  is absolutely 

continuous on  I  and write  ( )F AC I  if, for every  0  there exists  

0n   such that if   
1

,
s

j j
j

u


    is any subpartition of I such that
 

 (14. )           
1

,
s

j j

j

u then



           
1

( ) ( ) .
s

j j

j

F F u


    

Note. It will be seen in an exercise that it is essential that the subintervals  

 
1

,
s

j j
j

u


    be nonoverlapping. 

We now will establish some important  properties of the class  ( ).AC I  

 Theorem. Let  : [ , ]I a b  be a compact interval. 

(a) If   ( ),F AC I then F  is (uniformly) continuous on  .I  

(b) If  ( ), ( ).F AC I then F BV I   

(c) If , ( ), , F G AC I and c R  then the functions 

 , , , , .cF F F G F G and F G   

Also belong to  ( ).AC I    

Proof.  , 0, 0If I given let      be as in Definition 14.4 If  

.s I and s      it follows that ( ) ( ) ,F s F so F   is continuous 

at an arbitrary point  .I  Since    does not depend on   ,the function  

F  is uniformly continuous on  I . 

(b) let  1 0   be as in Definition 14.4 corresponding to  1.  If  J  is 

any subinterval of  

I with length  1,( )l J    then Var  ( ; ) 1.F J   Now let  

1( ) / ,r N withr b a    and divided  intI o r  nonoverlapping intervals  

1,..., rI I  with length  1( ) / .b a r   Excercises 7.G and 7.H imply that  
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1

( ; ) ( ; ) .
r

k

k

Var F I Var F I r


   

(c) It is trivial that a constant multiple of  ( )F AC I  belongs to  ( ).AC I  

Moreover, the inequality  | ( ) | ( ) | ( ) ( ) |,j j j jF F u F F u      implies 

that  ( ).F AC I Further, since 

 )( ) ( )( ) ( ) | | ( ) ( ) |,j j j j jF G F G u F G G           

We readily conclude that  ( ).F G AC I   

If  | ( ) |,| ( ) | ,F x G x M for x I   then since 

 | ( )( ) ( )( ) | | ( ) ( ) | . | ( ) |j j j j jFG FG u F F u G       

 | ( ) | . | ( ) ( ) |j j jF u G G u    

 [| ( ) ( ) | | ( ) | ( ) |],j j j jM F F u G G u       

It is seen that 

 
1 1 1

| ( ) ( ) | ( ) ( ) | | ( ) ( ) | ,
s s s

j j j j j j

j j j

FG FG u M F F u G G u
  

 
        

 
    

Whence it follows that  ( ).FG AC I  Q.E.D. 

The reader should recall the notion of negligible variation introduced in 

Definition 5.11. We now show that  a function in  ( )AC I  belongs to  

( )INV Z for any null set  .Z I  

  Lemma. If  ( )F AC I and Z I  is a null set, then  

( ). 0, 0IF NV Z let       be as in Definition 14.4. Since   is a null 

set, there exists a sequence   
1k k

J



of open intervals such that  

1k kZ J

  and  1 ( ) . , ( )k kl J It t Z let k t

     be the smallest index  

k  such that  kt J  and choose  ( ) 0t   such that  

  ( ).( ), ( ) k tt t t t J     Now let  
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.

0
1

: ( , ) ,j j j
P I t be a




  -fine sub partition of  . , 1,..., ,I Then for j s  

we have 

 jt   and  ( ).| ( ), ( )]
jj j j j j k tI t t t t J      

Thus, for each  ,k N  the intervals in 
.

0P is   so that  

0

1| ( ) ( ) | .j j jF u F u     Since  0  is arbitrary, this  that F  belongs 

to ( ).tNV  Q.E.D. 

It has already been noted (see Theorem 4.17) that the Cantor-Lebesgue 

function   is continuous and in  ( ),BV I  where  : [0,1].I   However (see 

Exercise 5.P), it is not in  ( ),INV T  where   is the Cantor set. Thus   is 

not in  ( ).AC I  

13.4 INDEFINITE INTEGRALS OF 

FUNCTIONS IN ( )L I  
 

It was seen in the Characterization Theorem 5.12 that F  is an indefinite 

integral of a function in  *( )R I if and only if F is differentiable a.e. and 

has negligible variation on its set of non differentiability. We now show 

that F is an indefinite integral of a function in  ( )L I  if and only if  F  is 

in ( ),AC I  or if and only if F  belongs to  ( )BV I  and has negligible 

variation on its set of non differentiablity. 

This result is sometimes called a ―descriptive characterization‖ (or‖ 

descriptive definition‖) of the Lebesgue integral, since it gives a 

necessary and sufficient condition for a function to  be the indefinite 

integral of a function in  ( )L I .In contrast, the process of evaluating the 

integral as limits of sums is referred to as the ―constructive definition ― 

of the integral. 

Characterisation Theorem. Let  : [ , ] : I a b and let F I R . Then the 

following assertions are equivalent. 

F is an indefinite integral of a function is ( )L I  
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 ( ).F AC I  

( )F BV I and if RCI  is the set where the derivative  '( )F x  does not 

exist, then  ( ).IF NV Z  

Proof. (a)  ( )b  Suppose that  ( ) :F x C a f


   for some  C R  and 

some  ( ).f L I  By Theorem 10.10(a), given  0  there exists  0   

such that if  E I  is a measurable set with measure  ,E   then  

.f f  It follows that if     ,1 1
( )

s s

j j jj j
I u

 
   is any sub partition of  

I  such that 

 
1

1

| ( | : , .
d

s

J J j j

j

U and if I then E  



       Therefore 

we have

 

     
1 1

14. | | | |

v j

j

s s

j j

j j

F F f
  

         

Therefore  ( )F AC I  

(b)  ( ) ( ),c If F AC I   then we have seen in Theorem 13.5 that  F  is 

continuous on  ( ).I and F BV I  The Lebesgue Differentiation Theorem 

13.1 imples that the set  R I  where  '( )F x  does not exist is a null set. 

Lemma 13.6 now implies that  ( ).IF NV Z  

(c)  ( ) a Let R  be the set of non differentiability of the function  F  and 

let  ( ) : '( ) ( ) : 0 .    f x F x for x I Rand f x for x R The characterization 

Theorem 5.12 implies that  

*( ) ( ) ( ) ,
x

a
f R I and F x F f for all x I      so that F  is an indefinite 

integral of  .f  Q.E.D 

The next corollary complements Lemma 13.6. 

 Corllary. Let  : [ , ] : . I a b and let F I R Then  ( )F AC I if and only 

if  ( )F BV I and  ( )F NV R for every null set  .Z I  

Proof. ( ) This is consequence of Theorem 13.5(b) and Lemma 13.6. 

( )  This follows from Theorems 13.1 and  13. .  Q.E.D. 



Notes 

97 

The next result shows that, for an increasing function ,F the equality 

holds in (13. ) with  with x b if and only if ( ).F AC I  

13.9 Corollary. Let : F I R  be increasing on [ , ].I a b Then 

( )F AC I  if and only if 

 (14. )   ' ( ) ( ).
b

a
F F b F a   

Proof. ( ) If ( ).F AC I then Theorem 13.7 implies that there exist 

( )C R and f C I   such that 

 
0

( ) .
a

F x C for x I    

Therefore ( ) ( ) ( ) .
b

a
C F a and F b F a f    The Differentiation 

.Theorem 5.0 implies that  ' . .f F a e Therefore  '
b b

a a
f F  and so  

(14. )  holds. 

 ( )  Suppose (14. ) holds and let  ( , )a b  be arbitrary. We claim that  

 (14. )              
0

( ) ( ) 'F F a F


      

If not, then Theorem 14.2 applied to the interval  [ , ]a  implies that 

0
( ) ( ) 'F F a F



     

If we apply Theorem 13.2 to the interval  [ . ],b  we infer that 

 ( ) ( ) '
b

F b F F


     

If we add the last two inequalities, we conclude that F(b) F(a) >  ',
b

a
F

which contradicts  (14. ). Therefore the equation  (14. )  holds for   

[ , ],a b  so that  F  is an indefinite integral of  ' ([ , ]).F L a b Therefore, 

Theorem 14.7 implies that  ( )F AC I . Q.E.D. 
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Note. It was seen in Example 4.18(a) that if    in the Cantor-Lebesque 

function, then    
0

0 ' (0) 1.
I

C    The proceeding corollary provides 

another proof of the fact that, although   is continuous and in  

([ , ]).BV a b  It is not in AC[(0,1)]. 

Diagram 13.1 summarizes the inclusions between important classes of 

functions on a compact interval. In it, we denote the set of indefinite 

integrals of functions in  *R by  *f R and shade that set. We denote the 

set of indefinite integrals of functions in  ,Lby f L the set of functions 

having bounded variation by  ,BV  the set of absolutely continuous 

functions by   ,AC  and the set of continuous functions by  C In view of 

theorems  *.AC f L BV f R   

Singular Functions 

We now introduce so important subset of the class of functions that see 

differentable  a.e. 

  Definition. A function  : F I R  is said to be singular on I  if its 

derivative  ( ) 0 . . .F x for a e x I   

The Cantor-Lebesque singular function    considered in Theorem  is 

singular in the sense just defined. Although  belongs to  ([0,1]),BV  we 

have seen that it does not belong to  ([0,1]),AC  and is not constant. 

The next result is a basic one concerning singular functions  and we will 

give two proofs of it. The first one is short, but depends on a number of 

deep theorems. Teh second proof, due to Gordon [G-4;pp.116-117] is 

longor, but entirely elementary. 

Theorem. If  ( )F AC I is singular on  I ,then  F is a constant function. 

First Proof. Theorem 14.7 implies that  ( ) ( ) '
z

a
F x F a F    for all  .x I  

Since  '( ) 0 . .,F x a e we conclude that  ( ) ( ) .F x F a forall x I   

Second Proof. Since ( ),F AC I given  0, there exists  0   as in 

Definition . 
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Now let  R be the set of all points  x I for which either  '( )F x  does not 

exist or  '( ) 0.F x   Since Ris a null set, there exists a sequence  1( )k kf 

 of 

open intervals containing R  such that   1 ( ) .k kI I

    

We now define a gauge  : [ , ]on I a b   as follows. 

(i) If  ,t R then  '( ) 0F t  and the Straddle Lemma 4.4 implies that 

there exists  ( ) 0t   such that if  ,u I  satisfy  

( ) ( ), | ( ) ( ) | ( ).t b t u t t t then F F u u             

(ii) If  ,t R  we let  ( )k t  be the smallest index k such that  kt I and 

choose  ( ) 0t   so that  ( ).[ ( ), ( ))] tt t t t I      

Now let   
.

1, 1
([ ], )

n

i i i i
P x x t 
  be a  

 -fine partition of  I  and consider 

the sets of indices. 

    : : : : .   i i z tS i t R and S i t R  

If  ,ii S  then we have  1\ ( ) ( 1) | | 1| .t i iF x F x x z       Further, if  

,zi S then  1, ( ,),[ ]i i k tz z I   so that 

 2

1

( ) ( ) ,
z

i i k

i E k

x x I I


 

 

      

From which it follows that  1| ( ) ( ) ( ) .
zi S i i iF x F x F x      

consequently, we have 

  1

1

| ( ) ( ) | | [ ( ) ( )]
n

i i

i

F b F a F x F x 



    

 1 1

,

| [ ( ) ( )] | | ( ) ( ) |
i z

n

i i i i

S i S

F x F x F x F x 

 

      

1

,

( ) ( 1).
i

n

i i

S

x x b c
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 Since 
 

0  is arbitrary, we conclude that ( ) ( ).F b F a But since the 

above argument applies to any subinterval [ , ] [ , ],a x a b we infer that  

( ) ( ) [ , ].F x F a for all x a b   

Q.E.D 

 Lebesgue Decomposition Theorem.  If  ( ),F BV I  then  F  can be 

respresented as the sum 

 (14. )   ,a sF F F   

Where  ( ) ( )a sF AC I and F BV I   in singular on  .I Moreover, this 

representation is unique up to a constant function. 

Proof. We define  a aF and F for x I by     

 ( ) : ' ( ) : ( ) ( ).
x

a a a
a

F x F and F x F x F x    

Consequently,  
' '' 0 . . ,s a sF F F a e on I so F    is a singular function on  I

. Also, since  aF  is the indefinite integral of  ' ( )F L I  with base point 

0,it follows from Theorem 13.7 that  ( ).aF AC I  

To establish the uniqueness, suppose that  F  also has the form  

,a sF G G   where  ( ) ( )a sG AC I and G BV I   in singular on  I . Then 

 a a a sF G G F    

So that  a aF G  is both absolutely continuous and singular on I  

Therefore, Theorem 13.11 implies that there exists a constant  C  such 

that  .a a a sF C Cand F G C      Q.E.D 

Check your Progress 

1. 
Prove: 

If 
 ( ), ' ( ).F BV I then F L I   In addition. If  F is increasing 

on  : [ , ],I a b then      ' ( ) ( ) .
x

a
F F x F a for x I    
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let  : [ , ]I a b  be a compact interval. 

If   ( ),F AC I then F  is (uniformly) continuous on  .I  

If  ( ), ( ).F AC I then F BV I   If , ( ), , F G AC I and c R  then the 

functions , , , , .cF F F G F G and F G   Also belong to  ( ).AC I  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: Let  : [ , ] : I a b and let F I R . Then the following assertions 

are equivalent. F is an indefinite integral of a function is ( )L I  

 ( ).F AC I  ( )F BV I and if RCI  is the set where the derivative  '( )F x  

does not exist, then  ( ).IF NV Z  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. Prove: Let : F I R  be increasing on [ , ].I a b Then ( )F AC I  if 

and only if  ' ( ) ( ).
b

a
F F b F a   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

5. Prove: If  ( ),F BV I  then  F  can be represented as the sum 

 (14. )   ,a sF F F   Where  ( ) ( )a sF AC I and F BV I   in singular on  

.I Moreover, this representation is unique up to a constant function. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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13.5 LET US SUM UP 
 

1. If 
 ( ), ' ( ).F BV I then F L I   In addition. If  F is increasing on  

: [ , ],I a b then
 

' ( ) ( ) .
x

a
F F x F a for x I    

2. Let  : [ , ]I a b  be a compact interval. If   ( ),F AC I then F  is 

(uniformly) continuous on  .I  If  ( ), ( ).F AC I then F BV I   

If , ( ), , F G AC I and c R  then the functions 

, , , , .cF F F G F G and F G   Also belong to  ( ).AC I  

3. Let  : [ , ] : I a b and let F I R . Then the following assertions are 

equivalent. F is an indefinite integral of a function is ( )L I   ( ).F AC I  

( )F BV I and if RCI  is the set where the derivative  '( )F x  does not 

exist, then  ( ).IF NV Z  

4. Let : F I R  be increasing on [ , ].I a b Then ( )F AC I  if and 

only if  ' ( ) ( ).
b

a
F F b F a   

5. If  ( ),F BV I  then  F  can be represented as the sum 

   ,a sF F F   Where  ( ) ( )a sF AC I and F BV I   in singular on  .I

Moreover, this representation is unique up to a constant function. 

13.6 KEY WORDS 
 

Absolute continuity 

Properties of continuity 

Lebesgues Differentiation 

Indefinite integral 

13.7 QUESTIONS FOR REVIEW 
 

1. Explain about properties of continuity 

2. Explain about Lebesgues Differentiation 

3. Explain about indefinite integrals of functions 
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13.8 SUGGESTIVE READINGS AND 

REFERENCES 

1. A. Modern theory of Integration - Robert G.Bartle 

2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 

 

13.9 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 13.3 

2. See section 13.3 

3. See section 13.4 

4. See section 13.4 

5. See section 13.4 
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UNIT-14 MAPPING PROPERTIES OF 

AC FUNCTIONS
 

 

STRUCTURE 

14.0 Objective 

14.1 Introduction 

14.2 Pre-calculus integration 

14.3 Applications 

14.4 Theorems related to properties of integration 

14.5 More mapping properties 

14.6 Let us sum up 

14.7 Key words 

14.8 Questions for review 

14.9 Suggestive readings and references 

14.10 Answers to check your progress 

14.0 OBJECTIVE 

In this unit we will learn and understand about Pre-calculus integration, 

mapping properties and related definitions and theorems. 

14.1 INTRODUCTION 

We already examined exponential functions and logarithms in earlier 

chapters. However, we glossed over some key details in the previous 

discussions. For example, we did not study how to treat exponential 

functions with exponents that are irrational. The definition of the number 

e is another area where the previous development was somewhat 
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incomplete. We now have the tools to deal with these concepts in a more 

mathematically rigorous way, and we do so in this section. 

For purposes of this section, assume we have not yet defined the natural 

logarithm, the number ee, or any of the integration and differentiation 

formulas associated with these functions. By the end of the section, we 

will have studied these concepts in a mathematically rigorous way (and 

we will see they are consistent with the concepts we learned earlier). We 

begin the section by defining the natural logarithm in terms of an 

integral. This definition forms the foundation for the section. From this 

definition, we derive differentiation formulas, define the number ee, and 

expand these concepts to logarithms and exponentil functions of any 

base. 

14.2 PRE-CALCULUS INTEGRATION 

 

The first documented systematic technique capable of determining 

integrals is the method of exhaustion of the ancient 

Greek astronomer Eudoxus (ca. 370 BC), which sought to find areas and 

volumes by breaking them up into an infinite number of divisions for 

which the area or volume was known. This method was further 

developed and employed by Archimedes in the 3rd century BC and used 

to calculate areas for parabolas and an approximation to the area of a 

circle. 

A similar method was independently developed in China around the 3rd 

century AD by Liu Hui, who used it to find the area of the circle. This 

method was later used in the 5th century by Chinese father-and-son 

mathematicians Zu Chongzhi and Zu Geng to find the volume of a 

sphere. 

In the Middle East, Hasan Ibn al-Haytham, Latinized 

as Alhazen (c. 965 – c. 1040 CE) derived a formula for the sum of fourth 

powers. He used the results to carry out what would now be called an 

integration of this function, where the formulae for the sums of integral 

squares and fourth powers allowed him to calculate the volume of 

a paraboloid.
[1]

 

https://en.wikipedia.org/wiki/Method_of_exhaustion
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Eudoxus_of_Cnidus
https://en.wikipedia.org/wiki/Archimedes
https://en.wikipedia.org/wiki/Parabola
https://en.wikipedia.org/wiki/Area_of_a_circle
https://en.wikipedia.org/wiki/Area_of_a_circle
https://en.wikipedia.org/wiki/Liu_Hui
https://en.wikipedia.org/wiki/Zu_Chongzhi
https://en.wikipedia.org/wiki/Zu_Geng_(mathematician)
https://en.wikipedia.org/wiki/Alhazen
https://en.wikipedia.org/wiki/Fourth_power
https://en.wikipedia.org/wiki/Fourth_power
https://en.wikipedia.org/wiki/Paraboloid
https://en.wikipedia.org/wiki/Integral#cite_note-katz-1
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The next significant advances in integral calculus did not begin to appear 

until the 17th century. At this time, the work of Cavalieri with 

his method of Indivisibles, and work by Fermat, began to lay the 

foundations of modern calculus, with Cavalieri computing the integrals 

of x
n
 up to degree n = 9 in Cavalieri's quadrature formula. Further steps 

were made in the early 17th century by Barrow and Torricelli, who 

provided the first hints of a connection between integration 

and differentiation. Barrow provided the first proof of the fundamental 

theorem of calculus. Wallis generalized Cavalieri's method, computing 

integrals of x to a general power, including negative powers and 

fractional powers. 

Newton and Leibniz 

The major advance in integration came in the 17th century with the 

independent discovery of the fundamental theorem of 

calculus by Leibniz and Newton. Leibniz published his work on calculus 

before Newton. The theorem demonstrates a connection between 

integration and differentiation. This connection, combined with the 

comparative ease of differentiation, can be exploited to calculate 

integrals. In particular, the fundamental theorem of calculus allows one 

to solve a much broader class of problems. Equal in importance is the 

comprehensive mathematical framework that both Leibniz and Newton 

developed. Given the name infinitesimal calculus, it allowed for precise 

analysis of functions within continuous domains. This framework 

eventually became modern calculus, whose notation for integrals is 

drawn directly from the work of Leibniz. 

Formalization 

While Newton and Leibniz provided a systematic approach to 

integration, their work lacked a degree of rigour. Bishop 

Berkeley memorably attacked the vanishing increments used by Newton, 

calling them "ghosts of departed quantities". Calculus acquired a firmer 

footing with the development of limits. Integration was first rigorously 

formalized, using limits, by Riemann. Although all bounded piecewise 

continuous functions are Riemann-integrable on a bounded interval, 

subsequently more general functions were considered—particularly in 
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https://en.wikipedia.org/wiki/Method_of_Indivisibles
https://en.wikipedia.org/wiki/Pierre_de_Fermat
https://en.wikipedia.org/wiki/Cavalieri%27s_quadrature_formula
https://en.wikipedia.org/wiki/Isaac_Barrow
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https://en.wikipedia.org/wiki/Differential_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
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https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Rigor#Mathematical_rigour
https://en.wikipedia.org/wiki/George_Berkeley
https://en.wikipedia.org/wiki/George_Berkeley
https://en.wikipedia.org/wiki/The_Analyst#Content
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the context of Fourier analysis—to which Riemann's definition does not 

apply, and Lebesgue formulated a different definition of integral, 

founded in measure theory (a subfield of real analysis). Other definitions 

of integral, extending Riemann's and Lebesgue's approaches, were 

proposed. These approaches based on the real number system are the 

ones most common today, but alternative approaches exist, such as a 

definition of integral as the standard part of an infinite Riemann sum, 

based on the hyperreal number system. 

14.3 APPLICATIONS 

 

 Integrals are used extensively in many areas of mathematics as well as in 

many other areas that rely on mathematics. 

For example, in probability theory, integrals are used to determine the 

probability of some random variable falling within a certain range. 

Moreover, the integral under an entire probability density function must 

equal 1, which provides a test of whether a function with no negative 

values could be a density function or not. 

Integrals can be used for computing the area of a two-dimensional region 

that has a curved boundary, as well as computing the volume of a three-

dimensional object that has a curved boundary. The area of a two-

dimensional region can be calculated using the aforementioned definite 

integral. 

We will first show that functions in AC map null sets to null sets (and 

measurable sets to measurable sets). It will be seen in Theorem 14.15 

that this property characterizes absolute continuity for a continuous 

function of bounded variation. In establish these results, we will need a 

few facts proved in Section 18. 

14.4 THEOREMS RELATED TO 

PROPERTIES 
 

 14.13 Theorem. Let  ( ) : [ , ]F AC I and let Z I a b    be a null set. Then  

( )F R  is a nulls set. 
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Proof Given  0, 0let      be as in Definition 14.4 and let   
1k k

J



 be 

a contable collection of open intervals with  

 
11

( ) .k k

kk

Z J and t J
 





    

Since the union  1j kJ

  is an open set, it follows from   [ . ; .315]B S p  

that we may assume that the open intervals  : ( , ), ,  k k kJ u k R  are pair 

wise disjoint. For each  ,k R  the Maximum-minimum theorem 

[ . ; .131]B S p  implies that there exist points  ka [respectively,  ]kb
 in the 

compact interval  
[ , ]k ku  where the restriction of  F  to this interval is 

minimized [respectively, maximized]. Therefore 

 (14. )    
1 1

( ) ( ) [ ( ), ( )]k k k

k k

F Z F J F a F b
 

 

   

For each  n R  we have 

 
1 1

| | | | .
n

k k k k

k k

b a u




 

        

Whence it follows that 

 )

1

| ( ( ) | .
n

k k

k

F b F a


   

But, since  n R is arbitrary, we conclude that 

  
1

| ( ) ( ) | .k k

k

F b F a




    

Therefore, it follows from  (14. )  that the set  ( )F R is contained in the 

union of a countable collection of (closed) intervals with total length  

.   Consequently,  ( )F R  is a null set. Q.E.D. 

Remark. The condition that F  sends null sets to null sets was called 

Condition (N)  by Luzin by(1915). 

14.14 Theorem. ( )If F AC I  and if  : [ , ]E I a b   is a measurable set, 

then  ( )F E  is a measurable set. 

Proof. The proof is based on the fact (see Theorem 18.19) that if  E I  

is a measurable set, then there exists a null set  Z and a sequence  

1( )n nK 

 of compact sets in I  such that  
1

.nn
E ZU K




  Since  nK  is 

compact, then its image  ( )nF K  is also compact and therefore (see 
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Theorem 18.13) is measurable. By Theorem 14.13, the set  ( )F  is a 

null set and hence is measurable. Since 

 
1

( ) ( ) ( ),n

n

F E F Z U F K




  

Theorem 10.2(a) implies that  ( )F E  is measurable Q.E.D. 

We now state a theorem that was proved in 1925, independently, by 

Stefan Banach (1892-1945) and M.A. Zarecki. We will give a proof only 

for the case of an increasing function . The general case is treated in [He, 

ST; pp.288ff.,303-304]and |G-3;p.99]. 

14.55 Theorem (Banach-Zarecki).If  F  is continuous on  : [ , ],I a b if F  

belongs to  ( )BV I  and if F  sends null sets to null sets, then  

( ).F AC I  

Proof. Suppose that  ( ),F AC I  so that there exists  0   such that for 

each  n  there is a subpartition of  I into compact intervals  

: [ , ], 1,..., ( ),km kn knI a b k s n  with 

 (14. )    
( )

1

( ) 1/ 2 .
s n

n

km km

k

b a


   

But such that  

 

 (14. )k     
( )

1

| ( ) ( ) | .
s n

km kn

k

F b F a


    

We now define  
( )

1: ,s n

m n m k kmE I

   so that  ,mE  being a countable 

union of compact intervals, is  a measurable set. By inequality  (10. ),  

we have 

 
( )

1

1

| | ( ) 1/ 2 1/ 2
s n

n m

m kn kn

n m k n m

E b a
 



  

       

Therefore, we conclude that  lim | | 0.m mE   

Since F is continuous, then  ( )mF E is also a countable union of compact 

intervals and so is measurable, Since  1 ...,m mI E E     formula  

(10. ) , ( )F the set F E is a null set. But, since  

1( ) ( ) ( ) ...,m mF I F E F E      another application o f  (10. )  implies 

that 

 (14. )   lim | ( ) | | ( ) | 0.m
m

F E F E
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On the other hand, if  F  is assumed to be increasing, we have  

( ) | ( ), ( )],km km kmF I F a F b whence it follows from  (14. )k  that 

 
( )

1

| ( ) | | ( ) ( ) | .
s m

m km km

k

F E F b F a


    

Which contradicts.  (14. ) .Therefore, we conclude that  ( ).F AC I  

Q.E.D. 

Integration by Parts 

We now given in Integration by Parts Theorem for Lebesgue integrable 

functions. 

14.16 Theorem. If  : [ , ] , ( ),I a b and if F G AC I then   

 (14. )    | ' '.
b b

b

a
a a

FG F G FG    

Proof. Since  , ( ),F G AC I  there exists a null set  Z I  such that  

 ( ) '( ) '( ) ( ) ( ) '( ) .FG x F x G x F x G x for x I     

Since   ' : ( )F I and G is continuous (and hence is bounded and 

measurable), then  ' ( ).F G L I  Similarly.  ' ( ) ,FG L I  so that 

( ' ') ' '.
b b b

a a a
F G FG F G FG      

By Theorem 14.5(c), the product  ( ),FG AC I  whence it follows from 

Theorem 14.7 that 

 ( ) ' |
b

b

a
a

FG FG  

Consequently  (14. )  follows from these formulas. Q.E.D. 

The reader   should compare this result with Theorems 12.2 and 12.3 

Substitution Theorems 

We return again to the topic of the substitution theorems. In Theorem 

13.5, we required that the substitution function    be strictly monotone 

and have a derivative except on a countable set. Here we will consider 

the case where   is absolutely continuous (and so may fail to have a 

derivative on a null set). However, we will now require that the functions  

' ( ).f F or f    are lebesgue intergrable. 

We will stae a theorem due to James B. Serrin and Dale E.Varberg. We 

refer the reader to their paper  [ . ]S V  or to [St;p.325] for a detailed proof. 

14.17 Substitution Theorem. Let  : [ , ] : [ , ]I a b and J c d   and let    

( ), ( ) ( ).AC I I J and F AC J    Further, let  and f  be the 
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derivatives of  ,and F respectively, when these derivatives exist, and 

equal to 0 else where. 

Then the following statements are equivalent: 

(a)  F   belongs to  ( ).AC I  

(b)  ( ).f    belongs to  ( )L I  and 

 (14. )v   
( )

( )
( ). , .

t t

a s
f f for all s t I




      

14.18 Remarks. (a) It is quite possible that  F  and    are absolutely 

continuous, but their composition  f   is not absolutely continuous. 

For example, let  

1 2( ) : [0,1], ( ) : ( sin ) (0.1]F x x for x and x x x for x      and  

(0) : 0.   Then both  F and   are absolutely continuous, but  F  does 

not have bounded variation n [0.1], so it is not absolutely continuous on 

this interval. 

(b) If  ( )AC I  is monotone on  ( ),I and if F AC J  then it is an 

exercise to show that F   is also absolutely continuous. Therefore,  

(14. )v  holds when  ( ) ( )f L J and AC I   is monotone. 

(c) if   ( )AC I  and if F satisfies a Lipschitz condition on  I  (that is, 

there exists a constant  0K   such that F  is absolutely continuous o 

I  

(d) If   ( )f L J  is bounded on  ,J  then it is an exercise to show that its 

indefinite integral  F  satisfies a Lipschitz condition on .J  Thus, (14. )v  

holds when ( )f L J  is bounded and  ( ).AC I  

Other instances in which (14. )v  holds are given in the next result, which 

is proved in [St;p.326]. 

14.19 Theorem. Let  ( ) ( ).AC I and f L J  Then  equation (14. )v  

holds if any one of the following conditions hold: 

(a)    is monotone on  .I  

(b)  f is bounded on .J  

(c)  ( ).f    belongs to  ( ).L I  

It is worth nothing that the indeed, if  F  and    are as in Remark 

14.18(a), then  'f F  belongs to  ( );L J  however, the function ( ).f    

does not belong to  ( ).L I  
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14.5 MORE MAPPING PROPERTIES 
 

We will now show that the indefinite integrals of functions in  *( ),R I  

although not necessarily in  ( ).AC I  have the same mapping property for 

null sets. This theorem was known for the indefinite integral of a 

Denjoy-Perron integrable function, and hence also for generalized 

Riemann integrable function. A direct proof was given by Xu Dongfu 

and Lu Shipan [X,L]. 

 14.20 Theorem. If  F  is an indefinite integral of  *( ).f R I then F

sends null sets to null sets. 

Proof. Let  : [ , ]Z I a b   be a null set and let

( ) : ( ) ( ) : 0 .Z Zf x f x for x I Z and f x for x Z     Since  

*( )f R I and Z  is a null set, then  *( )Zf R I and F  is also the 

indefinite integral of  Zf . 

Let 0  be given and let  
  be a guage as in Definition  1.7 for Zf . 

The family   : [ , ] : ,0 ( )F x r x r x Z r x        is a Vitali covering 

of  Z . Since F  is continuous, the family  'F  consisting of the 

nondegenerate intervals in   ( ) :F J J F  is s vitali covering of   ( )F Z  

.Thus, by the Vitali Covering Theorem 5.8, there exist disjoint intervals    

1'( ), 1,..., ,F I i p  from  'F  and closed intervals    : 1 ( )iJ i p in F I   

such that 

 (14. )     
11 1

( ) ( ) ( )
p

i i i

ipi i p

F Z F I U J with I J
 

  

    

Since F is continuous, there exist points  ,i i ia b I  such that  

[ ( ), ( ))].i i iFI F a F b  Let  ix  be the midpoint of  iI F  so that  , ,z Z  

and choose   ,ic a b sothat  

 
1 1

| ( ) ( ) | | ( ) ( ) | ( ( )).
2 2

i i i i iF x F c F b F a F I      

For  1,..., .i p  we let iJ be the interval with endpoints ,i ix and c lagged by 

ix .Since the  ( )iF I  are dispoint, so are the iI and hence also the iJ

.Thus  
.

1
: ( , )

P

i i i
P J x


 is a  fine   sub partition of .I  Since ( ) 0,Z if x  it 
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follows from  Corollary 5.4 of the Saks-Henstok Lemma, applied to  

.

Zf and P that   
1 1

( ( )) 2 | ( ) ( ) | 4 .
p p

i i i

i i

I F I F t F c
 

      

Using  (14. ),  we deduce that  ( )F Z is contained in the union of a 

countable collection of closed intervals with total length  5 .  Since

0.   is arbitrary we conclude that we conclude that  ( )F Z  is a null set.   

Generallized AC 

In the study of the Denjoy and Perron integrals, extensive use is made of 

classes of functions having bounded variation or absolute continuiry in a 

variety of generalized senses. The standard reference for this material is 

the book of Sake [S.2; especially Chapters 7 and 8]. Recently, Gordon 

[G-3] has given a through and modern treatment of this theory, which he 

relates to the generalized Riemann (Henstock-Kurzwell) integral that we 

have been discussion Gordons‘ treatment is very lucid, but it is inevitably 

complicated by the multiplicity of these generalized classes and their 

interrelations. While we will not go into these matters, we do wish to 

state another  

characterization of the indefinite integrals of functions in *( ),R I where  

: [ , ]I a b . 

The next definition is taken from , [G-3;p,146]. 

14.21 Definition. (a) If  ,E I we say that  : F I R belongs to the 

class  ( )AC E if for every  0 ,there exist  0  and a gauge  onE

such that if   
1

(| , ], )
s

i i i t
u t


 is a  , )E fine   subpartition of   E such that 

 /

1

| | ,
s

i i

i

u 



    then  /

1

| ( ) ( ) | ,
s

i i

i

F F u 



     

(b) We say that  F belongs to the class ( )ACG I if there exists a sequence

1( )m nF 


of sets in  I  such that  

1 ( )n n nI E and F AC E

   for each 

.n N  

The reader will note that the definition of  ( )AC E  contains the 

ingredients of both of the classes  ( ) ( ).IAC I and NV E  In this connection, 

Gordon  [ .3; .147]G p proved the following theorem, which is clearly 

related to our Characterization Theorem 5.12 
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14.22 Theorem. A function  f  belongs to  *( )R I  if and only if there 

exists a function  ( )F ACG I  such that  ' . .F f a e  

In order to establish that the generalized Riemann integral coincides with 

the Denjoy and perron integrals, Gordon shows that the class  ( )ACG I  

coincides with a class ( )ACG I , which affords the simplest treatment of 

the Denjoy integral. For the record, we will give a definition of this class 

of functions. 

First, we define the oscilliation of a bounded function  F on a set A I  

by 

  
1

( ) : sup, [ , ]
s

i i i
p A u


    is a collection of non overlapping intervals 

with endpoints in  E and suchthat   

1 1
| | , ([ , )] ,

is

i i i e i ii
then 

          Finally, we say that  

' ( ) 'F ACG I if F is continuous on  I and there is a countable collection  

1( )n nE 

  of sets in  I  with  
1 ( ) .i nE and F AC E for n

     

 

Exercises 

14.A A function  : F I R is said to satisfy a Lipschitz condition on  

: [ , ]I a b  if there exists a constant  0M  such that  

| ( ) ( ) | | |F x F y M x y    for all  , .x y I  Prove that such an  F belongs 

to ( ).AC I  

14.B If : F I R  satisfies  | '( ) | | ,F x M for all x I   show that  F  

satisfies a Lipschitz condition on  ,I and therefore belongs to  ( ).AC I  

14.C Let : F I R .Show that  ( )F AC I  if and only if for every  0  

there exists  0   such that if    
1

[ , ]
s

j j j
u


  in any subpartition of  I

satisfying  ,1
( )

s

j jj
u 

    then  
1
( ( ) ( )) .

s

j jj
F F u


     

14.D Let : F I R  Show that  ( )F AC I if and only if for every  0

there exists  0  such that if   
1

[ , ]j j j
u




 is any sequence of non 

overlapping intervals satisfying  
1
| | ,j jj

u



    then  

1
| ( ) ( ) | .j jj
F F u
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14.E (a) Let  ( ) :S x x  on the interval  : [ , ] 0.I c b with    Show that  

S  satisfies  | ( ) ( ) | (1/ 2 ) | |S x S y c x y    for all  ,, cx y I  so that  

( ).cS AC I  

(b) show that S does not satisfy a Lipschitz condition on  0 [0, ].I b  

(c) Prove that   ( ).cS AC I  [Hint: Given  0 ,let 0c  be sufficiently 

small, and then break  
1
| ( ) ( ) |

s

j jj
S S u


   into a sum of intervals in  

[0, ]c  plus intervals in  [ , ]c b  

14.F Show that the function  ( ) :S x x AC([0,1]) has the property that 

for any  0  these exists a finite collection of intervals   
1

[ , ]
s

j j j
u




satisfying   
1 1
| ( ) ( ) | | ( ) ( ) | 1.

s s

j j j jj j
S u and S S u

 
         

14.G Supose  F  is a continuous monotone function on [c,b]. If  

([ , ])F AC c b  for every  ( , ].c a b  prove that  ([ , ]).F AC a b  

14.H If  :F R  is a continuous function in  ( )BV I  and  '( )F x  exists 

except on a countable asset, prove that  ( ).F AC I  

Check Your Progress 

1. Prove: Let  ( ) : [ , ]F AC I and let Z I a b    be a null set. Then  

( )F R  is a nulls set. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: ( )If F AC I  and if  : [ , ]E I a b   is a measurable set, then  

( )F E  is a measurable set. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: If  F  is continuous on  : [ , ],I a b if F  belongs to  ( )BV I  and 

if F  sends null sets to null sets, then  ( ).F AC I  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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4. Prove: If  F  is an indefinite integral of  *( ).f R I then F sends null 

sets to null sets. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

14.6 LET US SUM UP 
 

1. Let  ( ) : [ , ]F AC I and let Z I a b    be a null set. Then  ( )F R  is a 

nulls set. 

2. ( )If F AC I  and if  : [ , ]E I a b   is a measurable set, then  ( )F E  

is a measurable set. 

3. If  F  is continuous on  : [ , ],I a b if F  belongs to  ( )BV I  and if F  

sends null sets to null sets, then  ( ).F AC I  

4. If  : [ , ] , ( ),I a b and if F G AC I then   

(14. )    | ' '.
b b

b

a
a a

FG F G FG    

5. Let  : [ , ] : [ , ]I a b and J c d   and let    

( ), ( ) ( ).AC I I J and F AC J    Further, let  and f  be the 

derivatives of  ,and F respectively, when these derivatives exist, and 

equal to 0 else where. 

Then the following statements are equivalent: 

 F   belongs to  ( ).AC I  

 ( ).f    belongs to  ( )L I  and 

  
( )

( )
( ). , .

t t

a s
f f for all s t I




      

6. Let  ( ) ( ).AC I and f L J  Then  equation (14. )v  holds if any one of 

the following conditions hold: 

(a)    is monotone on  .I  

(b)  f is bounded on .J  

(c)  ( ).f    belongs to  ( ).L I  

7. If  F  is an indefinite integral of  *( ).f R I then F sends null sets to 

null sets. 
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8. If  ,E I we say that  : F I R belongs to the class  ( )AC E if for 

every  0 ,there exist  0  and a gauge  onE such that if  

 
1

(| , ], )
s

i i i t
u t


 is a  , )E fine   subpartition of   E such that 

 /

1

| | ,
s

i i

i

u 



    then  /

1

| ( ) ( ) | ,
s

i i

i

F F u 



     

14.7 KEY WORDS 
 

Bounded on 

Null sets 

Sub partitions 

Gauge- Integration 

Riemann Integration 

Mapping properties 

14.8 QUESTIONS FOR REVIEW 
 

1.Explain about definitions related to mapping properties of integration. 

2. Prove: Let  ( ) : [ , ]F AC I and let Z I a b    be a null set. Then  

( )F R  is a nulls set. 

3. Prove: ( )If F AC I  and if  : [ , ]E I a b   is a measurable set, then  

( )F E  is a measurable set. 

14.9 SUGGESTIVE READINGS AND 
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2. The elements of Integration and Lebesgue Meassure 

3. A course on integration- Nicolas Lerner 

4. General theory of Integration- Dr. E.W. Hobson 

5. General theory of Integration- P.Muldowney 

6. General theory of functions and Integration- Angus 

E.Taylor 
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14.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 14.4 

2. See section 14.4 

3. See section 14.5 

4. See section 14.5 
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